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Abstract 

In these fiscally austere times, researchers have diligently sought methods to 

detect cost risk in the DOD acquisition programs. Our research effort reflects a 

culmination of three years of research seeking solutions to the problem of identifying 

programs with elevated levels of cost risk. Specifically, we applied multivariate 

classification and multinomial Naïve Bayes text classification techniques to develop three 

cost risk identification models. We find our model considering a 6-month change in the 

estimate at complete (EAC) of greater than 5% in magnitude, identified 69.5% of the 

high-risk programs in our dataset with 76.21% accuracy. Next, our model considering a 

6-month increase in the EAC of greater than 5% correctly identified 67.90% of the high-

risk programs with 79.68% accuracy. Finally, our model considering a 12-month increase 

in the EAC of greater than 5%, identified 91.69% of the high-risk programs with an 

accuracy of 78.31%. This research effort acts as a capstone, concentrating the knowledge 

collected from previous efforts and provides an actionable decision support tool for the 

DOD acquisition community. We find this research directly supports the goals of “more 

disciplined use of resources” and “improving efficiency” laid out in the 

OUSD(Comptroller) FY2013 Defense Budget (Department of Defense, 2012a:3.1). 
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Multivariate and Naïve Bayes Text Classification Approach to Cost Growth Risk in 

Department of Defense Acquisition Programs 

 

I.  Introduction 

After a decade of war, the Department of Defense (DOD) began the process of 

realigning priorities and budgets to reflect the drawdowns in Iraq and Afghanistan. 

Additionally, the DOD must deal with the added pressures of the 2011 Budget Control 

Act’s requirement to reduce expenditures by $259 billion over the next five years 

(Department of Defense, 2012b). All levels of Defense financial management face tight 

budgets, highly scrutinized expenditures, and greater accountability. 

Thirty percent of the $678.7 billion DOD budget request for Fiscal Year 2012 

consisted of acquisition costs (Office of the Under Secretary of Defense (Comptroller), 

2011). The success or failure of the acquisition enterprise depends on the careful 

management of cost.  To that end, prior research (Keaton, White, & Unger, 2011; 

Dowling, 2012; Miller, 2012; Dowling, Miller, & White, 2012) sought the development 

of methods to forecast changes in the Estimate at Complete (EAC) for acquisition 

programs. This early identification draws the Program Manager’s attention to areas that 

have the potential to become costly issues. Keaton et al. (2011) and Dowling et al. (2012) 

focused on the application of Statistical Process Control (SPC) methods to Earned Value 

Management (EVM) data to identify programs with high-risks of cost growth. While 

other methods exist for measuring cost growth, here we measure cost growth by changes 

in the EAC of Major Defense Acquisition Programs (MDAPs) (Hough, 1992:10-11). The 
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previous works showed a promising start to the idea of detecting elevated levels of cost 

growth risks in EVM data but suffered from somewhat low probabilities of an issue 

actually occurring given the model identified the program as at risk for cost growth. 

Dowling et al. (2012) showed a 0.53 probability of a monthly change in the EAC of 

greater than 5% in magnitude occurring within six months given their model identified 

the program as at risk for cost growth. To date, this is the highest probability achieved 

using SPC methods but Program Managers must have higher certainty an issue will occur 

if they are to take action based on these model outputs.  

Through this research, we investigate alternative techniques to improve the 

detection of potential cost growth. We introduce analysis of MDAPs through the 

application of multivariate classification methods and a multinomial Naïve Bayes text 

classification model to EVM data. The results of this research provide Program Managers 

an alternative method to differentiate between programs with nominal cost growth risk 

and those with high-risks of cost growth within MDAPs with a higher probability of 

success. Specifically, this research effort sought to answer the following questions: 

1. Does adopting either a multivariate classification, multinomial Naïve Bayes text 

classifier, or a hybrid of the two methods, improve on prior methods used to 

identify programs at risk of a 6-month change in the EAC? 

2. If so, do these new methods allow us to identify programs at risk of cost growth 

greater than 5% 6-months out? 12-months out? 
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3. If we answer questions one and two affirmatively, can we incorporate these 

methods into tools available to the DOD program management community? 

The remainder of this thesis proceeds as follows: First, in Chapter II we 

conceptualize the application of EVM and the use of EVM data to identify high-risk 

programs, specifically how prior research addressed this issue. We then provide an 

overview of multivariate classification and multinomial Naïve Bayes text classification. 

Next, in Chapter III we describe the application of these methods in this study, and 

present the results of our application of these methods in Chapter IV.  This thesis 

concludes with Chapter V, where we summarize the contributions and limitations of this 

study as well as provide direction for future research. 
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II.  Literature Review 

The DOD has struggled with cost overruns for decades (Calcutt, 1994; Sullivan, 

2001). The effect of even small changes in the EAC of an ACAT I program can ripple 

throughout the entire DOD acquisition portfolio. Each year the Government 

Accountability Office (GAO) produces a report outlining the performance of the DOD 

Acquisition portfolio. The estimated value for all DOD acquisitions stands at $1.58 

trillion. In 2011, the DOD acquisition portfolio experienced a 5% cost growth. This 

seemingly small number equated to a $74.4 billion increase to the expected cost of these 

weapon systems. These increases led to a loss in purchasing power, and a decrease in the 

number of programs in the acquisition portfolio (United States GAO, 2012). 

This research effort focuses on providing decision makers with a decision support 

tool that accurately identifies high-risk programs early in the acquisition process with low 

false detections rates as well as low failure-to-detect rates.  This early warning allows 

DOD decision makers and Program Managers the opportunity to apply their expertise to 

mitigate or even avoid potentially costly issues that could go undetected until too late. 

We show we can accomplish this using our alternative detection methods.  

This chapter reviews current literature on the application of EVM in the DOD 

acquisition environment, the current research seeking the detection of high-risk programs, 

and concludes with an introduction to the literature supporting our proposed alternative 

risk detection methods. 
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Earned Value Management Overview 

Beginning in the 1960s, the DOD implemented EVM to monitor technical, cost, 

and schedule performance of acquisition programs (Kwak, 2012). This tool supports 

Program Managers by providing them vital information on the overall health of the 

acquisition program as well as the ability to anticipate future issues. EVM supports the 

Program Manager through three main elements. First, Program Managers create a project 

plan/schedule that explains what work to accomplish and when. Second, EVM reports the 

actual cost of work performed. Third, EVM establishes the rules and metrics designed to 

quantify completed work on the project (Air Force Cost Analysis Agency, 2007:13.1). 

These three elements allow the Program Managers to track the progress of the acquisition 

programs and manage very complex systems. Unless otherwise noted, the remainder of 

this discussion focuses on material found in the Air Force Cost Analysis Handbook (Air 

Force Cost Analysis Agency, 2007:13.1-13.78), and highlights common terms and 

methods used in EVM.  

EVM Terminology 

EVM is a complex system that uses specialized terms to describe specific 

elements that relate to cost, schedule, and their derivatives. Table 1 provides a few key 

terms and acronyms that we use throughout our analysis. In the next section, we turn our 

attention to the Contractor Performance Report (CPR).  
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Table 1. Key Terms (Air Force Cost Analysis Agency, 2007:13.10-13.11) 

Term Description 

BAC – Budget at Complete Total budget for the total contract through any given work level 

PMB - Performance Measurement 

Baseline 

Time phased approved program budget for the contract 

BCWS - Budgeted Cost for Work 

Scheduled 

Value of work planned to be accomplished (also called Planned 

Value (PV)) 

BCWP - Budgeted Cost for Work 

Performed 

Value of work actually accomplished (also called Earned Value 

(EV)) 

ACWP -  

Actual Cost of Work Performed 

Cost of work actually accomplished (also called Actual Cost 

(AC)) 

SV - Schedule Variance Difference between planned and actual schedule accomplishment 

CV - Cost Variance Difference between planned and actual cost accomplishment 

CPI – Cost Performance Index Ratio of BCWP to ACWP; measure of cost efficiency 

SPI – Schedule Performance Index Ratio of BCWP to BCWS; measure of schedule efficiency 

EAC - Estimate at Completion Estimate of total cost at completion (through any work level of 

the contract) 

LRE – Latest Revised Estimate Contractor’s EAC 

 

Contractor Performance Reports 

The CPR provides us with many of the values for terms discussed in Table 1. The 

CPR acts as the main method to document cost and schedule data from the contractors 

(Defense Acquisition University, 2012). The CPR consists of five formats; we describe 

these in Table 2. These Formats provide data on contract performance, which contribute 

significantly to the research discussed here.  

We recognize as of 1 July 2012, DOD has combined the CPR and Integrated 

Master Schedule into an Integrated Program Management Report (IPMR). This does not 

affect our analysis since the first five formats of the IPMR mirror the CPR data. Going 

forward any references to the CPR is interchangeable with the first five formats of the 

IPMR (Defense Acquisition University, 2012). 
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Table 2. CPR Format Descriptions (Air Force Cost Analysis Agency, 2007:13.29) 

Format Title Frequency Description Use of Format 

1.  Work 

Breakdown 

Structure 

(WBS) 

Monthly or 

weekly basis 

as provided in 

contract 

Report WBS element performance 

data (BCWS, BCWP and ACWP) for 

the current reporting month as well as 

cumulative to date data.  Cost and 

schedule variance are calculated and 

reported.  Identifies any 

reprogramming adjustment, budget at 

completion, and/or estimate 

Isolate key cost and schedule 

variances, quantify the impact, 

analyze and project future 

performance.   Performance issues 

isolated at lowest level and analyzed 

for impact to overall cost and 

schedule variances. 

2. 

Organization 

Categories 

Monthly or 

weekly basis 

as provided in 

contract 

Reports the same data as Format 1 but 

identified by contractor functional 

labor categories, major subcontractors, 

and material. Data is summarized for 

the total program at the contract level. 

Isolate performance issues to the 

contractors functional organization by 

major subcontractors or by material. 

This allows analysis and problem 

isolation to either internal or external 

areas which enables the contractor to 

determine the impact to overall cost 

and schedule of the program. 

5.  

Explanation 

and Problem 

Analyses 

Monthly Narrative explanation of key cost, 

schedule, and associated variances.  

Contractor identifies program impacts, 

corrective action plans, and analyses 

significant drivers at the lowest 

specified level and at the total contract 

level. Includes analysis of 

Management Reserve and overall risk. 

Correlated with data from Format 1 

and 2 to understand reasons for the 

variances.  Understanding the 

underlying reasons and the 

contractors get well plans help the 

analyst to prepare an integrated 

assessment of past and future trends 

and analysis overall.  PM can then 

make informed decisions.  

 

EVM analysis techniques 

“The CPR’s primary value to the government is its ability to reflect current 

contract status and reasonably project future program performance” (Defense Cost and 

Resource Center, 2005).  Analysts use the CPR data to conduct investigations into the 

contract status and program performance. Table 3 provides common formulas used by 

analysts followed by a discussion on key formula uses. 
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Table 3. EVM Variance and Index Formulae (Air Force Cost Analysis Agency, 2007:13.38) 

 

Analysts regularly use the formulas in Table 3 to establish the health of 

acquisition programs. A few metrics relevant to this study include SV, CV, CPI, SPI, and 

EAC. The following paragraphs will provide a clearer understanding of these terms. 

SV provides the analyst with a performance measure with respect to the PMB. 

Favorable SV, characterized by positive values, indicates the program progressing ahead 
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of schedule, while a negative value, or unfavorable SV, indicates the program lags behind 

schedule. We find SV percent useful when comparing multiple programs as it negates the 

dissimilarities in program funding scale and allows a meaningful direct comparison.  

CV identifies the differences between the budgeted cost of work accomplished 

and the actual cost. Favorable CV, also evidenced by a positive value, indicates a 

potential surplus of funding, while an unfavorable CV indicates the program has the 

potential for a budget overrun. Similar to SV percent, the CV percent also negates the 

dissimilarities in program funding scale between programs. 

The CPI indicates the cost efficiency of a project. We accomplish this by showing 

a ratio of dollars budgeted versus dollars spent. A program with a CPI of 1.0 indicates the 

program earns as many budgeted dollars as it spends. A CPI less than 1.0 shows the 

program spending in excess of the budgeted amount. A CPI above 1.0 indicates a 

program spends less money than the budgeted amount.  

The SPI measures the schedule efficiency of an acquisition program. A favorable 

SPI of greater than 1.0 show the program earning credit for more work than scheduled, or 

ahead of schedule. Conversely, an unfavorable SPI of less than 1.0 indicates the program 

earning credit for less work than scheduled, or behind schedule. 

EAC provides an estimate of the total cost of a program. Analysts typically see 

two EACs. First, there is a Government estimate of the project. Secondly, the Defense 

contractors provide an EAC (usually three: worst case, best case, and most likely case), 

also known as the Latest Revised Estimate (LRE) (Air Force Cost Analysis Agency, 

2007). In this analysis, we use LRE and EAC interchangeably and find Defense 
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contractors generally provide three EAC estimates in the Format 1s. The contractors 

provide their EAC-worst case, EAC-best case, and EAC-most likely. We use all three in 

our analysis but we focus on the EAC-most likely to observe changes; we simply refer to 

the EAC-most likely as EAC. The EAC provides Program Managers with a good 

crosscheck for identifying potential cost increase at different levels within the program.  

Recent research has expanded the tools available to Program Managers and 

analysts for identifying programs at risk of a change in the EAC within 6-months through 

the analysis of EVM data (Keaton, White, & Unger, 2011; Dowling, 2012; Miller, 2012; 

Dowling, Miller, & White, 2012). The following discussion provides a review of the 

current literature on these techniques. 

Increased Risk detection in EVM 

Risk defined 

As previously discussed, the EAC provides the Program Manager with the 

anticipated costs of the completed program. Each month, the program’s efficiency may 

change and this change produces a higher or lower EAC. Keaton, White, & Unger (2011) 

pioneered the application of SPC methods to predict major changes to the EAC using 

Statistical Process Control methods. They defined a major change in the EAC as a 

monthly change greater than 5% in magnitude. Smaller changes occur regularly and did 

not raise concerns in their analysis. Later research in predicting major changes to the 

EAC (Dowling, 2012; Dowling, Miller, & White, 2012; Miller, 2012) continued the use 

of this definition when identifying increased risk in an Acquisition program. Originally, 
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the authors used the term problem in place of risk. According to the Risk Management 

Guide for DOD Acquisition (OUSD(AT&L), 2006:1), “Risk is a measure of future 

uncertainties in achieving program performance goals and objectives within defined cost, 

schedule and performance constraints.” The Risk Management Guide for DOD 

Acquisition (OUSD(AT&L), 2006:1) goes on to describe issues, or problems, as events 

that have already happened with certainty. We then argue that prior research (Dowling, 

2012; Dowling, Miller, & White, 2012; Miller, 2012; Keaton, White, & Unger, 2011) 

focused on evaluating historical data to identify future programs with elevated levels of 

risk and uncertainty associated with cost growth, as measured by the EAC, and not on 

identifying problems that have already occurred. 

Increased Risk Detection Methods 

Over the last two years, we have seen an increased interest in research seeking 

improved methods to anticipate major changes in the EAC (Dowling, 2012; Dowling, 

Miller, & White, 2012; Miller, 2012). We see each effort explored different aspects of 

available data but all prior research focused on the use of Statistical Process Control to 

identify what programs would suffer from a monthly change in the EAC greater than 5% 

in magnitude within a specified timeframe (see Table 4).  

Keaton et al. (2011) sought to develop a model focused on predicting programs at 

risk of a change in the month over month EAC greater than 5% in magnitude. Keaton et 

al. accomplished this by using data from the contract history files and 

Autoregressive/Integrated/Moving Average to identify statistical differences to monitor 

changes in the CPI and SPI. Finally, they applied Statistical Process Control (SPC) to 
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identify programs expected to experience a monthly change greater than 5% in 

magnitude. 

Dowling (2012) developed an optimization model that attempted to predict the 

future EAC of a program. He then compared this predicted EAC with the current month 

EAC to create an EAC ratio input for his SPC control bounds. These control bounds 

provided the mechanism to identify programs at risk of a monthly change greater than 5% 

in magnitude within a specified period.  

Similarly, Miller (2012) applied Latent Dirichlet Allocation (LDA) text mining 

methods to analyze the Format 5s and produced inputs used in an Ordinary Least Squares 

(OLS) regression model to predict a future EAC. He then compared the predicted EAC 

value of the model against the actual values of the EAC. This ratio served as inputs to the 

SPC model, which again served as the mechanism to identify programs at risk of a 

monthly change greater than 5% in magnitude with a specified period. 

Dowling et al. (2012) developed a weighted average from the outputs of Dowling 

(2012) and Miller (2012) to produce a model considering both Format 1 and Format 5 

data. This weighted average served as the inputs for their SPC Model. This linking of the 

two models produced an overall improvement over the outputs of each model 

independent of the other. 
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Table 4. Risk Identification Methods 

Authors Variables Data Source Detection Method 

Keaton, White, & Unger 

(2011) 

CPI, SPI Contract history 

files 

Statistical Process 

Control 

Dowling (2012) 148+ variables 

 

(variations and 

combinations of 

data found on 

Format 1) 

Contractor 

Performance Report 

– Format 1 

Statistical Process 

Control 

Miller (2012) Text Contractor 

Performance Report 

– Format 5 

Statistical Process 

Control 

Dowling, Miller, & 

White (2012) 

148+ variable & 

text  

Contractor 

Performance Report 

– Format 1 & 5 

Statistical Process 

Control 

SPC provides process managers a statistical tool that identifies quality control 

problems. Typically, SPC attempts to measure characteristics of a product as it moves 

through the manufacturing process. When a product’s characteristics fall outside some 

predetermined upper and lower acceptable boundaries, or limits, we identify this process 

as out of control and require adjustments to bring the product’s characteristics back 

within acceptable ranges. We see this specific tool of SPC referred to as a Control Chart 

(Thompson & Koronacki, 2002:53-71). 

We see from the Program Manager’s perspective that with an in control process 

we expect the EAC to remain somewhat constant. If conditions, as indicated by the 

variables observed in Table 3, begin to deteriorate or substantially improve, we expect 

the EAC to increase or decrease respectively. Given a limited amount of information and 

time, the Program Manager would find it beneficial to identify these areas of concern and 

focus their time and talents on these high-risk areas. 
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Control Chart Effectiveness 

Any tool used to support decisions must provide reliable information to a decision 

maker. In the context of Control Charts, we expect to find high levels of certainty that if 

the acquisition program’s measured characteristics fall within the acceptable range the 

program will not experience cost growth. Conversely, if the program’s measured 

characteristics fall outside the acceptable ranges, we expect a high level of certainty the 

program will experience cost growth. Prior research has shown promising results in these 

areas. 

Figure 1 depicts a desired classification matrix for any risk identification method. 

Figure 2 shows the conditional probability outcomes of the prior works focusing on the 

six month timeframe (Keaton, White, & Unger 2011; Dowling, 2012; Dowling, Miller, & 

White, 2012; Miller, 2012). The principle diagonal of the classification matrices details 

the correctly identified observations in the analysis; in Figure 1, we identify the high 

probability elements as the principle diagonal. The off diagonal of the classification 

matrices details the incorrectly identified observations in the analysis; in Figure 1, we 

identify the low probability elements as the off diagonal. These results correspond to a 6-

month detection window. Meaning if the model identifies a program as high-risk, the 

authors counted the detection correct if the EAC experienced a monthly change of greater 

than 5% in magnitude within 6-months. 
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Figure 1. Desired Classification matrix 

 

 
Figure 2. Detection Comparison (Dowling, Miller, & White, 2012)  

Alternative Detection Method: Multivariate Classification  

From Figure 2, we see a sharp improvement in the ability to anticipate major EAC 

changes. Initial efforts showed the probability of successfully identifying the high-risk 

programs, or programs expected to experience a monthly cost growth of greater than 5% 

in magnitude within six months, at 0.227. The most recent efforts improved the 

probability of a successful high-risk detection to 0.529. We see this as an opportunity to 

submit Discrimination and Classification as an alternative detection method and further 

increase the detection rate.  

Discrimination seeks to separate groups of data as much as possible (Johnson & 

Wichern, 2007:575). In comparison, classification seeks to create a rule that allows the 

accurate assignment of new observations to a particular group. The goals of 

High-Risk Nominal Risk

High-Risk High Probability Low Probability

Nominal Risk Low Probability High Probability

Desired Classification Matrix

Predicted Class

Actual Class

High-Risk Nominal Risk High-Risk Nominal Risk

High-Risk 0.2269 0.2800 High-Risk 0.4236 0.1798

Nominal Risk 0.7731 0.7200 Nominal Risk 0.5764 0.8202

High-Risk Nominal Risk High-Risk Nominal Risk

High-Risk 0.3988 0.2017 High-Risk 0.5290 0.1831

Nominal Risk 0.6012 0.7983 Nominal Risk 0.4710 0.8169

Keaton, White, & Unger (2011)

Actual Class

Dowling (2012)

Actual Class

Predicted Class Predicted Class

Dowling, Miller, & White (2012)

Actual Class

Predicted Class Predicted Class

Miller (2012)

Actual Class
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discrimination and classification tend to overlap and often accomplished simultaneously. 

Going forward we simply refer to discrimination and classification as classification.  

In the context of EVM risk identification, we have two classes: high-risk 

programs and nominal risk programs. Through the analysis of historical monthly CPR 

data, we know which programs belong to a given class. We use classification methods to 

analyze historical data and create classification rules that will properly assign a new 

observation to the high-risk or nominal risk class. A good classification rule will result in 

few misclassifications. In other words, a good classification rule would mirror the results 

from the desired classification matrix in Figure 1.  

Additionally, comprehensive classification models takes into account prior 

probabilities. These prior probabilities incorporate already understood information about 

a population of interest into a model. For example, “if we really believe that the (prior) 

probability of a financially distressed and ultimately bankrupted firm is very small, then 

one should classify a randomly selected firm as nonbankrupt unless the data 

overwhelmingly favors bankruptcy” (Johnson & Wichern, 2007:578). If there are no 

assumptions made for the prior probability of each class, we can leave the probability of 

each class as equally likely (or 0.5).  

Next, we consider the cost of misclassification, another important aspect of 

classification (Johnson & Wichern, 2007:581). Where possible, a good classification 

model accounts for the cost of misclassifying an observation. In the case of EVM risk 

detection, we find it difficult to attribute specific costs of misclassification. For example, 

we do not have clear accounting of costs associated with falsely identifying programs as 
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high-risk. We understand the additional cost in the form of person-hours or additional 

resources used to identify and mitigate the root cause of risks that never materializes can 

become substantial but these costs are unknown. In the absence of clear information, we 

can assume (however unlikely) these costs to be equal. Figure 3 represents the costs of 

misclassification depicted by a cost matrix, where c(2|1) represents the cost of 

misclassifying a high-risk program as a nominal risk program and c(1|2) depicts the cost 

of misclassifying a program with nominal risk as high-risk. 

 
Figure 3. Misclassification Cost Matrix (Johnson & Wichern, 2007:581) 

In classification analysis, we use statistical principles to describe the 

characteristics of each class. This description of each class results in a probability density 

function for each class. The normal distribution provides an example of a well-known 

probability density function. For now, let        and       represent the probability 

density functions of the high-risk class and nominal risk classes respectively.  

We tie all these classification concepts together in a discussion about the 

minimization of Expected Cost of Misclassification (ECM) (Johnson & Wichern, 

2007:581). As the name implies, the ECM provides the expected cost of misclassifying 

observations. We calculate the ECM by multiplying the off-diagonal entries in Figure 3 

by the probabilities of occurrence, defined in Equation 1 as   for the prior probability of 
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high-risk program class and    for the prior probability of nominal risk program class. 

ECM also considers the probability of misclassifying an observation, here defined as 

       if we identify the program as nominal risk if it truly belongs to the high-risk 

program and        if we misclassify a nominal risk program as high-risk. Classification 

rules should seek to minimize the ECM. Equation 2 and Equation 3 define the 

classification regions     and    that minimize the ECM. 

Equation 1. Expected Cost of Misclassification 

                                  

 

(1) 

  

 

Equation 2.    Classification Region 

   
     

     
  

      

      
  

  

  
  

                                                     

 

(2) 

Equation 3.    Classification Region 

   
     

     
  

      

      
  

  

  
  (3) 

                                                      

In our discussion of high-risk program detection in EVM, we can see that given 

some density functions,        and      , we have the ability to determine which class to 

assign the observation. If the density ratio is greater than or equal to the cost ratio 

multiplied by the prior probability ratio, we assign the observation to the high-risk class, 

as seen in Equation 2. We then assign observations that are less than these ratios to the 

nominal risk class, as shown in Equation 3. In Chapter III, we further discuss how we 
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determine the density function, what characteristics define the model, and how to apply 

classification analysis to EVM data to provide an alternative problem detection method. 

Alternative Detection Method: Multinomial Naïve Bayes Classifier  

Miller (2012) used text-mining analysis, specifically, Latent Dirichlet Allocation 

Self-Organizing Map, to identify programs at high-risk of cost growth. From Figure 2, we 

see text analysis on the Format 5s showed the potential to differentiate the two classes but 

suffered from low probabilities a program would incur cost growth given the model 

identified the program as high-risk. In this section, we introduce an alternative method to 

identify programs with high-risk of cost growth through the analysis of Format 5 data, the 

multinomial Naïve Bayes classifier.  

Manning, Raghavan, & Schutze (2008:236-237) introduce the concept of 

multinomial Naïve Bayes Classifier within machine learning-based text classification. 

Machine learning automatically constructs the criteria for class assignment by learning 

the class characteristics from the training data (the dataset less the validation set). We 

focus in on a specific type of learning in our research, supervised learning. In supervised 

learning, the researchers provide manually labeled observations to the classifier for 

learning. We use the training set to train the model then apply the finalized model to the 

validation set for a final measure of the expected performance of the model on new data. 

In our research effort, we differentiate high-risk programs from nominal risk programs 

using multinomial Naïve Bayes model described here. 

Manning et al. (2008) characterize multinomial Naïve Bayes model as a 

probabilistic learning model and defined in Equation 4: 
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Equation 4. Multinomial Naïve Bayes model  

                   

      

 

 

 

(4) 

where P(c|d) is the conditional probability of class c given document d, P(c) is the prior 

probability of class c,         is the conditional probability of term    in the document d  

given class c,    represents the total number of tokens, or words, considered in the 

document (Manning, Raghavan, & Schutze, 2008:239).        is proportional to 

                  
 because we have dropped P(d) from the denominator of Bayes’ 

rule,        
                  

    
. Later, we compare the probabilities between 

               and                  . During this comparison      remains 

constant; therefore, we set        proportional to                   
. To clarify 

Equation 4 further consider the following excerpt from Manning, Raghavan, & Schutze 

(2008): 

            
   are the tokens in d that are part of the vocabulary we use for 

classification and    is the number of such tokens in d. For example, 

            
   for the one-sentence document Beijing and Taipei join the WTO 

might be                             , with      if we treat the terms and 

and the as stop words (Manning, Raghavan, & Schutze, 2008:239).  

 

We define Stop words as extremely common words that provide insignificant 

information when differentiating between classes (Manning, Raghavan, & Schutze, 

2008:25). We completely exclude stop words from the analysis vocabulary. With the 

probabilistic learning model defined, we turn our attention to development of the decision 

criteria used to assign a class to a document.  
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 To meet the objective of identifying the best class of a document we look to the 

most likely class or maximum a posteriori (MAP) class cmap displayed here in Equation 5 

(Manning, Raghavan, & Schutze, 2008:239). 

Equation 5. Maximum a Posteriori (MAP) class 

     
      

   
         

      

   
              

      

  

 

 

(5) 

where       is defined as the probability estimate of      using data in the training set, 

         is the estimated conditional probability of word    in class c, and   is a fixed set 

of classes. When evaluating Equation 5, multiplying a large number of conditional 

probabilities can quickly result in a floating point underflow. Floating point underflow 

occurs when the number being calculated is smaller than the minimum value the 

computer is able to represent. Therefore, the computer represents the number as zero. To 

overcome this problem, Manning, Raghavan, & Schutze (2008:239) suggest computing 

the cmap using properties of logarithms. We know                      ; therefore, 

when we apply this logarithm property to Equation 5, we still find the class with the 

higher probability as the most probable and results in Equation 6.  

Equation 6. Log Maximum a Posteriori 

     
      

   
                       

      

   

 

 

(6) 

According to Manning, Raghavan, & Schutze (2008:239) the sum of          and 

            measures the evidence the document being observed belongs to class c. 
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To estimate the parameters       and          , we initially use the maximum 

likelihood estimate (MLE) (Manning, Raghavan, & Schutze, 2008:240) From Equation 6, 

we define the MLE of       as: 

Equation 7. Maximum Likelihood Estimate  of       

       
  

 
   

 

 

(7) 

where    is the number of documents belonging to class c and N is the total number of 

documents analyzed. Additionally, in Equation 6, we define the MLE of         as: 

Equation 8. Maximum Likelihood Estimate         

         
   

          
   

 

 

(8) 

where     is the number of times the word t appears in the training document from class 

c. Strictly using MLE results in an estimate of zero for word-class combinations unseen 

in the training data (Manning, Raghavan, & Schutze, 2008:240). The training data is 

inadequate to observe every word-class combination possible or rare words, a problem 

commonly referred to as sparseness. Laplace smoothing provides us with a method to 

combat problems introduced by sparseness.  

 Laplace smoothing, or add-one smoothing, adds one to each count of Tct in 

Equation 8. This is equivalent to a uniform Bayesian prior for each word. As we add new 

observations the uniform Bayesian prior is updated. Equation 9 displays the 

aforementioned Laplace smoothing. 
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 Equation 9 Laplace Smoothing 

         
     

             
 

     

              
   

 

 

(9) 

where       is the cardinality, or number of words, of the training data  (Manning, 

Raghavan, & Schutze, 2008:240). This has the effect of decrementing the probability of 

words actually seen and applying the reserved probability to the unseen observations.  

Equation 9 can be generalized to an add-α smoothing detailed in Equation 10. 

 Equation 10 Add-            

         
     

             
 

     

               
 

 

 

(10) 

where α corresponds to the belief in a uniform Bayesian prior distribution over the 

vocabulary (Manning, Raghavan, & Schutze, 2008:208).  

We make two assumptions in the application of the multinomial Naive Bayes 

classifier (Manning, Raghavan, & Schutze, 2008:246-249). First, we assume a Naïve 

Bayes conditional independence. This means we assume the words are independent of 

each other given some class. In reality, we know that conditional independence does not 

typically hold in text. An example provided by (Manning, Raghavan, & Schutze, 

2008:248) considers the word pair Hong and Kong for the class China. In everyday 

usage, these words express highly dependent behavior but we still treat them as 

independent. In this example, the dependent nature of the words does not influence the 

ability to apply the Naïve Bayes classifier. 

  Secondly, we assume positional independence of the words. Here, we give a word 

the same conditional probability regardless of the position of the word in the document. 

Models commonly called “bag of words models” make the positional independence 
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assumption (Manning, Raghavan, & Schutze, 2008:247). Neither of these assumptions 

holds in reality. “NB [Naïve Bayes] classifiers estimate badly, but often classify well” 

(Manning, Raghavan, & Schutze, 2008:249). In the Naïve Bayes classifier, we see that 

the highest score and not the accuracy of the probability estimate drives the classification 

decision. 

In Figure 4, we tie the entire discussion of the multinomial Naïve Bayes classifier 

together using an algorithm adapted from Manning, Raghavan, & Schutze (2008:241). In 

Chapter III, we further clarify our vocabulary extraction methods and discuss our 

application of add-α smoothing. 

TrainMultinomialNB(   ) 

1 V   EXTRACTVOCABULARY( ) 

2 N   CountDocs( ) 

3 for each     

4 do                          

5           
  

 
 

6                                              

7 for each     

8 do                           

9 for each     

10 do                
     

               
 

11 return                  

ApplyMultinomialNB(                    ) 

1                            

2 for each     

3 do                  [c] 

4 for each     

5 do                             

6 return                    
Figure 4. Naïve Bayes algorithm (multinomial model): Training and testing adapted from Manning, 

Raghavan, & Schutze, (2008:241)  
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Summary 

This chapter provided a review of current literature on the application of EVM in 

the DOD, the current research seeking the detection of high-risk acquisition programs 

using EVM data, and introduced literature supporting two alternative problem detection 

methods, multivariate classification, and multinomial Naïve Bayes text classification. In 

the next chapter, we delve deeper into the application of multivariate classification to 

EVM data, analysis of Format 5 data by applying the multinomial Naïve Bayes text 

classification model, and integration of the two methods to improve identification of 

high-risk acquisition programs.  
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III.  Methodology 

In this chapter, we provide a detailed description of the analysis conducted for this 

study. We comprise this study in three distinct components. First, we begin detailing the 

analysis of EVM data using Multivariate Classification techniques to identify high-risk 

acquisition programs. Secondly, we introduce a multinomial Naïve Bayes classification 

technique on the Format 5 data to identify high-risk programs. We conclude this chapter 

by detailing the integration of the Multivariate Classification technique and the 

multinomial Naïve Bayes classifier to produce a new risk detection method.  

Multivariate Classification 

Database 

This study focuses on detecting risk in MDAPs and seeks to improve on 

previously developed models (Dowling, 2012; Dowling, Miller, & White, 2012; Miller, 

2012). We elected to use the database collected for these previous studies in our analysis. 

This allows for more comparable results between this study and prior studies. 

Additionally, using the same database eliminates any improvements in results associated 

with additional data unavailable to the prior studies. Next, we provide a discussion on this 

database, including: target data, data collection, additional data calculations, other 

considerations, validation set, and limitations.  

Target data 

This study, like prior studies, focuses on the largest DOD acquisition programs. 

The Acquisition community knows these programs as Acquisition Category ID (ACAT 
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ID) and are defined by “Research, Development, Test and Evaluation (RDT&E) expenses 

of more than $365 million (Fiscal Year (FY) 2000 constant dollars) or procurement of 

more than $2.19 billion (Fiscal Year (FY) 2000 constant dollars)” (Defense Acquisition 

University, 2009). Additionally, a program can be designated an ACAT ID program if the 

Office of the Under Secretary of Defense for Acquisition, Technology, and Logistics 

identifies the program as a special interest item. ACAT ID programs are the largest 

programs in dollar terms and experience the highest level of scrutiny and oversight. A 

small percentage change in these programs results in large dollar changes, meaning these 

programs potentially can benefit greatly from identifying high-risk programs sooner. 

Data Collection 

Prior researcher has utilized the Defense Cost and Resource Center (DCARC) for 

data on these programs (Dowling, 2012; Dowling, Miller, & White, 2012; Miller, 2012). 

DCARC serves as the DOD’s authoritative source for EVM data, including the monthly 

CPR data. The original query of DCARC used to produce the database resulted in 1303 

monthly CPR data points from 37 different programs ranging in dates from September 

2007 to August 2011. Figure 5 provides a histogram of monthly EACs (in millions), 

Table 5 details the composition of the database by service and program type. 

   
Figure 5. Database Histogram ($ Millions) 
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Table 5. Program Composition 

 

These CPRs provide us a wealth of information from the Format 1s and Format 

5s. Initially, we focus strictly on the Format 1 much like Dowling (2012) but later 

incorporate the Format 5s using the multinomial Naïve Bayes Classifier. Table 8 shows 

the data fields originally collected from the Format 1s. 

Table 6. DCARC Format 1 Fields 

Begin Date Report Number 

Program Name Budgeted Cost Of Work Scheduled 

EAC – Best Case Actual Cost of Work Performed 

EAC – Worst Case Budgeted Cost of Work Performed 

EAC – Most likely Case Budget At Complete 

Additional Data Calculations 

As previously discussed, analysts collect EVM data and perform calculations 

from Table 3 to understand the health of the acquisition program. By performing these 

calculations on our dataset, we derive the same information commonly used by the EVM 

analyst. Additionally, previous studies (Dowling, 2012; Dowling, Miller, & White, 2012; 

Miller, 2012) have included the moving three-month standard deviation for the selected 

variables to explain the stability of the measure used, as well as the change between the 

current month’s observation and one to two months prior. Table 7 shows a complete list 

Service Quantity Platform Quantity

AF 14 Plane 10

Navy 8 Comm. 9

Army 7 Satellite 5

Joint 7 Missile 3

Marine 1 Helicopter 3

Radar 2

Ship 2

Facility 2

Vehicle 1
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of variables requiring additional calculations in excess of that collected from the Format 

1, see Appendix A for calculation details. 

Table 7. Variable List for Additional Data Calculations 

6 Mo 

Delta 
CV% SV% StDev CPI 2 Month Change 

Prgm 
Name w/ 
Mo 

% Difference Between ML 

and W 
CV% StDev SPI 2 Month Change 

% 

Complete 

% Difference Between ML 

and B 
CPI 1 Month Change TSPI 2 Month Change 

CPI 
% Difference Between W and 

B 
SPI 1 Month Change TCPI 2 Month Change 

SPI StDev CPI TSPI 1 Month Change SCI 2 Month Change 

TSPI StDev SPI TCPI 1 Month Change SV% 2 Month Change 

TCPI TSPI StDev SCI 1 Month Change CV% 2 Month Change 

SCI SCI StDev SV% 1 Month Change  

SV% TCPI StDev CV% 1 Month Change  

 

Other Considerations 

If we consider the change in the EAC of the program as cost growth or cost 

growth recovery, we know from RAND (2008:47) that system types express different 

levels of cost growth. Additionally, RAND (2008:73) highlighted smaller programs tend 

to experience higher levels of cost growth. To capture these points we have included the 

program type, military service, and program size in our data, see Table 8. We 

conceptualize small in terms of small, medium, and large programs. Small represents 

33% of our data. 

Table 8. Additional Variables Considered 

Air Force Facility Radar 

Army Helicopter Satellite 

Joint Missile Ship 

Navy Plane Small ( < $250 million) 
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Since this study focuses on identifying programs at risk of cost growth in six 

months from the current observation, we also calculated the percent change that occurs 

six months from the current observation. This data populates the database of possible 

training data with known classes of high-risk or nominal risk. Of the original 1303 

observations, the training data consisted of 1009 observations. We lose two months at the 

beginning of each program. We require these three months for the standard deviation 

calculations. Additionally, we lose six months at the end of each program. These six 

months allows us to calculate the 6-month cumulative change from the current 

observation. 

Validation Set 

Significant consideration was given when deciding what validation method to use. 

We concluded a two-part validation method would provide the most insight into the 

validity of our findings. We first validate our findings against a commonly used 20% 

randomized withhold. We achieved the 20% randomized withhold using JMP
®
’s random 

row selection and set the selection rate to 20%  (SAS Institute INC, 2013a). This data was 

then set aside prior to any analysis or model building and provided an estimate of the 

performance of the model beyond the training data. There are, however, challenges 

associated with this validation method. Johnson & Wichern (2007:599-600) explain there 

are two main limitations: 

(i) It requires large samples 

(ii) The function evaluated is not the function of interest. Ultimately, almost all of 

the data must be used to construct the classification function. If not, valuable 

information may be lost. 
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We have a sufficiently large sample size to overcome the limitations associated 

with small sample size but we desired to minimize the concerns with the loss of 

information that occurs by removing a large portion of data from the training set for 

validation. To offset this weakness we included a second approach called Lachenbruch’s 

“holdout” procedure. This method is commonly referred to as Leave One Out Cross 

Validate (LOOCV). We delve into more detail about the holdout procedure in the 

validation section of this chapter. 

Limitations 

Upon careful reflection, we find three limitations that potentially affect this 

database. First, we implicitly assumed each monthly CPR independent of the others. 

However, we know each CPR reports on trends continuing over many months throughout 

a programs existence. We find it unclear if this influences our random selection 

validation method. We attempt to overcome this limitation by applying the LOOCV 

method but this also has the same limitation. In our recommendations for further 

research, we discuss ideas to understand the influence of this limitation on this study. 

The second limitation to this database resulted from the collection method. When 

this database was originally developed, researchers excluded certain Extensible Markup 

Language (XML) files due to the inability to read and interpret that specific file format. 

This introduces a slight selection bias because we have left out a portion of available 

data. We note here that DCARC has provided a CPR file viewer that should overcome 

this limitation with Format 1 data in future research (Defense Cost and Resource Center, 

2013a). 
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The third limitation we find in this database relates to data gaps. This problem 

occurs during data collection. For example, we collect several months of data but a single 

observation is missing. In these cases, as with previous research (Dowling, 2012; Miller, 

2012; Dowling, Miller, & White, 2012), we use linear approximation to estimate the 

missing observation. We calculate the linear approximate by selecting the observation 

immediately preceding the gap and the observation immediately following the gap. We 

then average these observations together and use this average in place of the missing 

data. These gaps are minimal, occurring only 10 times in our 1303 observations or in 

0.8% of the observations. We terminate analysis of the program and treat it as if no more 

data is available if the gap is greater than two consecutive months. Dowling (2012:19) 

provided Table 9 showing the total number of programs originally collected from the 

DCARC database, the total number of ACAT1D programs, and the programs remaining 

useful after evaluation of the limitations discussed here. 

Table 9. Available Data from DCARC (Dowling, 2012:19) 

Category Number of Programs 

All Programs 118 

ACAT 1D 64 

Useable 37 

 

Multivariate Classification Model building 

In this section, we discuss the specific application of classification analysis to the 

database previously mentioned. We begin the discussion by describing the process of 

selecting a probability density function to use in this study. Next, we provide the 

constructs used for variable selection and model building. We conclude our discussion on 
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multivariate classification by outlining the decision process for model selection and 

validation. 

In this study, we elected to evaluate the data using a multivariate normal 

classification model. We find support for this in Johnson & Wichern (2007:584), 

“classification procedures based on normal populations predominate in statistical practice 

because of their simplicity and reasonably high efficiency across a wide variety of 

population models.”   

Additionally, we consider what happens if the data is not multivariate normal. 

Again, Johnson & Wichern (2007:595) provide two options. The first option is to 

transform the non-normal data to data more nearly normal. Alternatively, we can apply 

the multivariate normal classification model without considering the parent population 

due to the “central limit effect” and measure the classification effectiveness.  

To simplify the implementation of this model at the program level, we have 

elected to press forward without considering the parent population of the data. If the 

classification results work well and the validation set confirms the performance of the 

model, we find the application of the multivariate normal classification model reasonable. 

The multivariate normal distribution is a generalization of the univariate normal 

distribution and defined in Equation 11. The multivariate normal distribution is a p-

dimensional normal distribution where   represent the mean of the random vector    and 

  represents the variance-covariance matrix of   (Johnson & Wichern, 2007:150).  
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 Equation 11 Multivariate Normal Distribution 

     
 

    
 
    

 
 

  
              

  

 

 

(11) 

This generalization of the univariate normal distribution leads us to our 

multivariate density ratio. In our analysis, we make no assumptions concerning the 

equality of covariance matrices between the high-risk and nominal risk classes. In cases 

were the covariance matrices are not equal between populations, we use the Quadratic 

Classification Rule (Johnson & Wichern, 2007:594). If during analysis the covariance 

matrices between the two populations equal, the quadratic classification rule simplifies to 

the linear classification rule. Equation 12 shows the multivariate normal density ratio and 

Equation 13 shows the multivariate normal density ratio simplified.  

 Equation 12 Multivariate Normal Density Ratio 

     

     
 

 
 

    
 
     

 
 

  
      

    
        

  

 
 

    
 
     

 
 

  
         

        
   

 

 

 

 

(12) 

 Equation 13. Simplified Multivariate Normal Density Ratio 

     

     
  

 

 
  

    
     

        
   

     
   

      

 
 

 
   

    

    
  

 

 
   

   
       

   
      

 

 

 

 

 
(13) 

where    is a new observation,    is the covariance matrix for class i, and     is the mean 

vector for class i. 

Equation 14 shows the classification regions using the quadratic classification 

rule. We replace   with    to signify the calculation of the sample covariance matrix for 
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class i. Our prior estimation of the probabilities for each class c is simply the maximum 

likelihood estimate. We calculate this using the relative frequency of each class in the 

training data, see Equation 7. Additionally, we lack any substantive information 

concerning the cost of misclassification and set these equal                  . 

 Equation 14 Quadratic Classification Regions 
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k = 
 

 
   

    

    
  

 

 
   

   
       

   
      

 

 

(14) 

 

Variable Selection 

Some variables provide useful information when building a model and others are 

irrelevant. To decide what variables we find relevant we elected to use forward stepwise 

discriminant analysis, backward stepwise discriminant analysis, and a modified random 

generation plus sequential selection (RGSS).  

Prior to beginning any stepwise discriminant analysis, we checked for perfect 

correlation among variables. We found four variables perfectly correlated in our 

correlation matrix; Table 10 illustrates the results from our correlation analysis. We 

elected to remove the variables on the right of Table 10 to ensure problems associated 

with multicollinearity do not surface. To further understand why these correlations occur, 

we deconstruct the calculations of SPI and SV% in Appendix B. 
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Table 10. Correlation Assessment 

 

We draw on the work of Jennrich R. I. (1977a, 1977b) for an understanding of 

stepwise discriminant analysis. The ratio of within generalized dispersion to total 

generalized dispersion provides a method to determine which variable to add or delete 

from the model. We calculate the within generalized dispersion by taking the determinant 

of the within group cross-product matrix. The total generalized dispersion is the 

determinant of the total cross-product matrix for the variables in our analysis. Equation 

15 depicts the formula described above, also known as Wilks’  -criterion. 

 Equation 15 Wilks’  -criterion 

     
      

      
 

 

 

(15) 

Here      represents the within group sum of cross-products for variables x and 

      represents the total sum of cross-products for variables x.  R. I. Jennrich further 

clarifies the notation for Wilks’  -criterion as follows: 

Gerneralizing the   and   notation, let             and   
          be sequences of variables let        and        be the matrices 

whos ijth elements were          and           respectively. Finally, let 

     and      be abbreviated notation for        and        (Jennrich, R. I. 

1977b:78). 

 

Values for Wilks’ lambda-criterion range from zero to one. Smaller values for 

Wilks’ lambda-criterion indicate better separation between groups. Equation 16 shows 

the impact of adding a variable u to our variable set and we call this a partial  -statistic 

Variable 1 Variable 2 Correlation

SPI SV% 1

StDev SPI SV% StDev 1

SPI 1 Month Change SV% 1 Month Change 1

SPI 2 Month Change SV% 2 Month Change 1
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(Jennrich, R. I. 1977b:77). We use Equation 17, an F-statistic, to test the significance of 

the change in      from adding the variable u, where n represents the total number of 

observations, q is the total number of classes, and, p is the number of variables currently 

in the analysis. 

 Equation 16 partial  -statistic 

       
        

    
 

 

 

(16) 

 Equation 17 Discriminant Analysis F-statistic 

  
     

   
 
          

      
 

 

 

(17) 

Here we take a moment to discuss the sweep operator. Jennrich, R. I. (1977a:58-

62) discusses a sweep operator, or a stepwise function, that steers the selection of 

variables using statistical criteria. The sweep operator begins with a square matrix 

represented by         whose kth diagonal element       . If we choose to include a 

variable k, we “sweep”   on the kth diagonal element. This sweep results in a new matrix 

          of the same size as   given by Equation 18: 

 Equation 18 Forward Sweep Operator 
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(18) 
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The sweep can be undone by performing an inverse sweep of   on the kth diagonal 

element (already in the model) outlined in Equation 19: 

 Equation 19 Backward Sweep Operator 
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(19) 

 

Three theorems support the sweep operator as an exchange. Here we provide the 

three theorems followed by a brief discussion of their application in our research. For 

more information on these theorems including proofs, we direct the readers to Jennrich R. 

I. (1977a).  

Theorem 1: Let   and   be matrices of the same size and let   be a square matrix 

such that 

     

Let    be obtained from   by replacing its kth column by the kth column of   and 

let    be obtained from   by replacing its kth column by minus the kth column of 

 . If the kth diagonal element of   is nonzero and    is the result of sweeping   

on its kth diagonal element, then 

        

Theorem 2: If it is possible to sweep the partitioned matrix on the left below on 

each diagonal element of the square submatrix     in some order, i.e., if the 

required nonzero elements are encountered, then     is nonsingular and the result 

of the sweeping is displayed on the right: 
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Theorem 3: If   is a positive definite matrix, then its diagonal elements are 

nonzero and remain nonzero after any sequence of sweeps (Jennrich R. I., 

1977a:60-62). 

 

We see from Theorem 1 that performing the sweep operator is equivalent to 

rearranging the matrix and does not affect the equality of the matrices. Theorem 2 shows 

the sweeping of the diagonal elements are independent of the order. Theorem 3 ensures 

that the sweeps from Theorem 2 are defined regardless the order the sweeps are carried 

out. We used the determinant test to ensure the Within Cross-product matrix and Total 

Cross-product matrix met the positive definite matrix requirements of Theorem 3.  

In stepwise discriminant analysis, we use the sweep operator to control the 

variable selection process. Jennrich R. I. ( 1977b:78) describes the creation of two 

“current status matrices”, the within current status matrix        and the total current 

status matrix        . The initial values for these matrices are the within sums-of-cross-

products matrix        and the total sums-of-cross-products matrix       respectively.  

We now apply these methods to the selection of variables for analysis. In forward 

stepwise discriminant analysis, we begin with an empty set of variables in our analysis. 

We use the partial  -statistic to determine if    should be included in our analysis, shown 

in Equation 20.  

 Equation 20 Partial  -statistic for to Enter Model 
           

    

    
 

 

 

(20) 

This corresponds to the F-to-enter statistic, shown in Equation 21, which we use 

to compute the p-value of the variable under consideration for addition to the model. 
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 Equation 21 F-to-Enter Statistic 

   
     

   
 
    

  
 

 

 

(21) 

Conversely, we use the inverse partial Wilk’s  -statistic to determine if a variable 

currently in our model should exit the model. We accomplish this by using Equation 22. 

 Equation 22 inverse partial Wilk’s  -statistic to Exit Model 

            
    
    

 

 

 

(22) 

This also corresponds to the F-to-exit statistic, shown in Equation 23. 

 Equation 23 F-to-Exit Statistic 

   
       

   
        

 

 

(23) 

The final consideration in our stepwise discriminant analysis relates to the within 

group tolerance, or measure of multicollinearity, for the variable    not in  . We measure 

tolerance using Equation 24 and rearrange Equation 24 to produce the Variance Inflation 

Factor (VIF) in Equation 25.  

 Equation 24 Tolerance 

   
    

   
 

 

 

(24) 

 Equation 25 Variance Inflation Factor 

    
 

  
 

 

 

(25) 

 

We use Equation 18 through Equation 25 to perform the stepwise discrimination 

analysis in a three-part process as outlined in Jennrich R. I. (1977b). 
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1. Remove the variable with the smallest F-to-remove value unless this value is 

greater than or equal to the F-to-remove threshold (perform inverse sweep on 

selected variable). 

2. If it is not possible to remove a variable, find the variable with the largest F-to-

Enter value among all variables whose tolerance is greater than or equal to the 

tolerance threshold. Enter this variable unless its F-to-enter value is below the F-

to-enter threshold (perform sweep on selected variable). 

3. If it is not possible to remove or enter a variable the stepping is complete 

(Jennrich R. I., 1977b:78). 

In our analysis, we elected to use a p-value of 0.025, or half the commonly 

accepted significance level of 0.05, as our threshold measure for entry or exit. This p-

value indicates the significance of the change in our Wilk’s  -statistic from adding or 

removing the variable (Jennrich R.I., 1977b:77). We selected a p-value of 0.025 because 

we wanted to ensure the considered variables were extremely significant without overly 

constricting the variables available for consideration in the stepwise procedures. 

Additionally, we used a conservative VIF of five as the cutoff for our measure of 

multicollinearity; again, this is half the frequently accepted threshold (Kutner, 

Nachtsheim, Neter, & Li, 2005:409).  

In backward stepwise discrimination, we begin the stepwise process with a full 

feature set, or a model that includes all variables as shown in Appendix C. We 

accomplish this by inverting the within sums-of-cross-products matrix        and the 

total sums-of-cross-products matrix       and use the inverted values as the initial values 

for the within current status matrix        and the total current status matrix        . Once 

the within current status matrix        and the total current status matrix        have been 
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inverted we simply apply the three-part process mentioned above to build a model using 

the stepwise discrimination analysis. 

Limitations exist with forward and backward stepwise analysis. Kutner, 

Nachtsheim, Neter, & Li, (2005:368) highlight the fact that forward and backward 

stepwise analysis methods single out a model as “best” and may become stuck in local 

optimum solutions. To combat this limitation, we introduced an element of randomness 

when evaluating variables to include in the model. We adopted the work of Doak (1992), 

by incorporating the concept of Random Generation Plus Sequential Selection. 

Doak (1992) showed that a feature space could be explored using randomly 

generated subsets and evaluating this subset through Forward Sequential Selection (FSS) 

and Backward Sequential Selection (BSS). We implemented this model with a slight 

modification; instead of FSS and BSS, we applied Stepwise Discriminant Analysis. 

Meaning, we began by randomly selecting the initial size of the empty set from zero to 

39, the total number of variables in our analysis. We then introduced randomly selected 

variables to fill the randomly generated empty set. Finally, we followed the three-part 

process outlined earlier for Stepwise Discriminant Analysis. Doak (1992:29) found 10 

generations sufficient to explore the feature space. We selected a much more 

conservative 25 generations of the modified RGSS to ensure adequate coverage of the 

feature space.  In theory, by randomly selecting the starting location within the feature 

space, we reduce the risks of the model finding a single local optimum solution and 

provide several potential optimal solutions.  
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Model Selection 

After each step in the stepwise discriminant analysis outlined earlier, we 

evaluated the model using the apparent error rate (APER). This measure of performance 

evaluates how well the model performs on the training data. We define the APER as the 

fraction of misclassified observations over the total number of observations in the 

training set. Figure 6 and Equation 26 illustrate the APER as illustrated in Johnson & 

Wichern (2007:598-599). 

 
 

Where: 

     = number of    items correctly classified as    items 

    = number of    items misclassified as    items 

     = number of    items correctly classified as    items    

    = number of    items misclassified 

Figure 6. Classification Matrix for the Apparent Error Rate Johnson & Wichern (2007:598) 

We then define the APER in Equation 26 as 

 Equation 26 Apparent Error Rate 

     
       

     
 

 

 

(26) 

Using each variable selection method (Forward, Backward, modified RGSS), we 

recorded data after each step and document the step history. This data consisted of 

iteration number, smallest p-value to enter, largest p-value to remove, APER, and the list 

of variables included in the model for that iteration number.  

Actual Class

Predicted Class
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In our analysis, we have no prior data to suggest which variable selection method, 

if any, provides superior results. We elected to evaluate the top two models from each 

variable selection method for evaluation. We determined the top two models within each 

category by first identifying all models whose p-values to enter was larger than the 

threshold to enter of 0.025 and largest p-value to exit was smaller than threshold to exit 

of 0.025. Next, we select the two models with the smallest APER overall for validation. 

We repeat this method for each variable selection method and select the model with the 

smallest APER. In the event of a tie between models, we incorporate F measure.  

F measure serves as an evaluation method used in the field of Information 

Retrieval and consists of two components. (Manning, Raghavan, & Schutze, 2008:142-

144). First, we consider Recall in Equation 27. 

 Equation 27 Recall 

         
   

  
 

 

 

(27) 

where     is the number of observations correctly identified as high-risk and    is the 

total number of observations identified as high-risk. Next, we consider Precision in 

Equation 28. 

 Equation 28 Precision 

            
   

       
 

 

 

(28) 

where     is the number of observations correctly identified as high-risk and     is the 

number of observations belonging to the high-risk class but incorrectly identified as 

nominal risk. We use the weighted harmonic mean of Recall and Precision to produce the 

F measure in Equation 29. Let 
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 Equation 29 F measure 

  
 

 
 
        

 
 

 
        

     
            

   

 
   

 

 

(29) 

 

         ,         , P is the Precision value from Equation 28 and R is the Recall 

value from Equation 27 (Manning, Raghavan, & Schutze, 2008:144). For further 

information on the reasoning for the harmonic mean vice the arithmetic mean we direct 

the readers to (Manning, Raghavan, & Schutze, 2008:144). 

We believe the desired risk detection model detects a large proportion of the 

problems that occur while minimizing the number of false detections. With this in mind, 

we elected to emphasize precision by choosing a value of       where values of     

emphasize precision and values of     emphasize Recall. By selecting      , we 

weight Precision twice as much as Recall. We select the model with the highest F 

measure to go forward for validation.  

Validation  

Once we have the models selected, we must evaluate the performance of the 

models beyond the training data. To accomplish this, we turn to the validation data 

partitioned prior to the model-building portion of our analysis. As discussed in the 

Validation Set section earlier, we decided to use two validation methods.  

First, we validate our selected models against a 20% withhold validation set. We 

apply the classification function to each observation in our validation set. Finally, we 

record the performance of the selected model on the validation set using a classification 
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matrix as displayed in Figure 6. We then calculate APER and Recall as defined in 

Equation 26 and Equation 27.  

Secondly, we then combined the training data and validation data into one dataset 

and evaluated our model using the holdout procedure process. Lachenbruch’s holdout 

procedure is a four-step process outlined in Johnson & Wichern (2007): 

1. Start with the    group of observations. Omit one observation from this group, 

and develop a classification function based on the remaining         

observations. 

Where: 

                
                                            

2. Classify the “holdout” observation using the function constructed in Step 1. 

3. Repeat Steps 1 and 2 until all of the    observations are classified. Let    
   

 be the 

number of holdout     observations misclassified in this group. 

4. Repeat Steps 1 through 3 for the    observations. Let    
   

 be the number of 

holdout observations misclassified in this group (Johnson & Wichern, 2007:599-

600). 

Using the holdout procedure method, we calculate the expected actual error 

rate,        , Equation 30. The expected actual error rate reflects the long-term error 

rates we would expect over an extended period beyond the data currently available for 

analysis. Once we evaluated our model using the LOOCV method we looked to expand 

the definition of high-risk and apply this method to increase utility to the analyst. 

 

 Equation 30 Expected Actual Error Rate 

        
   

   
    

   
 

     
 

 

 

(30) 
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Multivariate Classification - Alternative Parameterization   

 We have previously proposed the Multivariate Classification method as an 

alternative to prior works (Dowling, 2012; Dowling, Miller, & White, 2012; Miller, 

2012) in detecting programs expressing high-risk profiles. We now discuss an alternative 

parameterization of high-risk programs. First, we propose a fundamental change to the 

definition of high-risk where the EAC must increase over 5% and eliminate the lower 

boundary of -5%. This more closely aligns the definition of risk in our analysis with that 

of the Risk Management Guide for DOD Acquisition (OUSD(AT&L), 2006:1), which 

focuses on the negative consequences of risk. Secondly, we tested the impact of 

extending the time horizon for identifying high-risk programs from 6-months to 12-

months out. This provides the Program Managers more time to react to indicators 

showing an increase in the risk profile of their programs. These new parameters do not 

materially change the methodology but simply changes the definitions of the classes and 

the calculation for change in EAC.  

EAC change greater than 5% 

 Changing the definition of high-risk program class has little impact on our 

methodology. We accomplished the multivariate classification analysis using the new 

definition of high-risk programs and nominal risk programs. The methodology does not 

change due to a change in the labeling of the observations.  

Extended time horizon 

 In this model, we continued the use of the new definition of high-risk programs 

discussed earlier and attempted to extend the identification horizon to 12-months. This 
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change resulted in a decrease in the size of the training data. When calculating the 12-

month change we evaluate     
        

  
 , where    is the current observation. This 

results in a 12-month decrement from each program. Prior to separating a 20% validation 

set, the 12-month decrement resulted in a database consisting of 816 observations. Given 

the new database and validation set, we simply analyzed the data using the Multivariate 

Classification method previously discussed to select a model. 

Multinomial Naïve Bayes Classifier 

Database 

The construction of this database follows the same methods used for the 

Multivariate Classification method previously mentioned. Meaning, we include the same 

programs selected for analysis in the Multivariate Classification method in the 

Multinomial Naïve Bayes Classifier. Instead of using Format 1 data, we now observe the 

Format 5 data collected from DCARC.  

Data Collection 

 The Multinomial Naïve Bayes Classifier, as previously discussed, constructs a 

classification model from text in documents available for analysis. To enable this 

analysis, we first constructed a vocabulary,  , of all words used in the documents,   , of 

interest. Next, we tokenize, or refine, the vocabulary for use in our analysis. Once we 

finalized the vocabulary, we observe the count of each word for every month of 

observation. We further discuss these processes here but many of these operations 

overlap and accomplished simultaneously. 
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Vocabulary extraction 

 We begin vocabulary extraction with documents in many different formats 

including: Portable Document Files (PDF), Hyper Text Markup Language (HTML), 

Microsoft Excel
® 

(Microsoft, 2010a), and XML. As previously mentioned, we are unable 

to address the programs in the XML file format in this analysis. We convert all other 

Format 5 file formats to Text files (TXT). Using the free statistical software R
®
 (The R 

Foundation for Statistical Computing, 2011), we create a Comma-Separated Values 

(CSV) file for each program that combines all monthly observations into one file. 

Reference Appendix D for an example of the R code used in this analysis. During the 

execution of this code, we eliminate punctuation and case-fold all words. Case-folding 

reduces all words to lowercase so that all instances of a particular word can be counted 

properly (Manning, Raghavan, & Schutze, 2008:28). For example, we count the word 

Program as a separate word from program without case-folding. Prior to running the R 

code, we must remove apostrophes and quotation marks from the TXT files. These 

characters affect the ability of R to break the text into individual words. We refer the 

readers to Appendix E for an Excel Visual Basic Application (VBA) code that automates 

the removal of the previously mentioned special characters.  

The program specific CSV file contains columns for every month of observations 

for the program and rows for each instance of a word in the document with a 

corresponding count of the word for each column. Figure 7 displays portion of one such 

CSV file. 
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Figure 7. Program Specific CSV File Screenshot 

 

 Following the creation of the 37 program specific CSV files, we create a 

consolidated CSV file consisting of all programs in our analysis set. We refer the readers 

to Appendix F for an example of the R code used in this analysis to consolidate all 

program specific CSV files. In the consolidated CSV file, we include the class labels 

required for supervised learning. Additionally, we incorporate the Prgm Name w/ Mo 

field; Figure 8 displays a portion of the consolidated CSV file.  

  
Figure 8. Consolidated Programs CSV Screenshot 

 

sample AEHF1 AEHF2 AEHF3 AEHF4

4119 4800 10884 6481

a 51 44 397 221

aassembly 1 0 0 0

ab 1 0 2 1

aborts 1 0 0 0

above 4 1 3 4

ac 1 0 0 0

accelerometer 2 2 2 3

acceptable 1 1 0 1

acceptance 5 1 12 1

access 14 4 5 5

accomplished 1 1 2 1

AEHF_1 AEHF_2 AEHF_3 AEHF_4 AEHF_5 AEHF_6

Prgm Name w/ Mo AEHF AEHF AEHF1 AEHF2 AEHF3 AEHF4

a 51 44 397 221 1 493

aa 0 0 1 0 0 1

aaa 0 0 0 0 0 0

aaddjjuusstteedd 0 0 0 0 0 0

aahheeaadd 0 0 0 0 0 0

aanndd 0 0 0 0 0 0

aarrrriivvaall 0 0 0 0 0 0

aassembly 1 0 0 0 0 0

aassttrrootteecchhaassoo 0 0 0 0 0 0

aatt 0 0 0 0 0 0

ab 1 0 2 1 0 3

abandoned 0 0 2 0 0 2
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 Initially, we have 1303 monthly program observations consisting of 37,809 

unique words with a total word count of 10,895,076. From Figure 8, we see many of 

these words make no sense. This occurs due to difficulties arising from the process used 

by the TXT file format when converting PDF to TXT files (Forman, 2008:263). 

Additionally, many words are exceedingly rare relative to the total word count. Zipf’s 

Law provides a method to model the distribution of words across documents. Manning, 

Raghavan, & Schutze (2008) provides the following explination of the Zipf’s Law. 

It states that, if    is the most common term in the collection,    is the next most 

common, and so on, then the collection frequency     of the  th most common 

term is proportional to     (Manning, Raghavan, & Schutze, 2008:82) 

    
 

 
 

Zipf’s Law shows that very few words repeat a significant portion of the time. In 

fact, the frequency drops quickly as   increases, meaning a large proportion of words 

occur only one to two times in the entire dataset. We find the removal of rare words a 

common practice when evaluating text data (Forman, 2008:267). While this is a common 

practice, we find no prescribed threshold to define rare. We elected to define rare as 

words with less than five occurrences. This resulted in a removal of 20,003 words or 

52.91% of the unique words. Forman (2008) discusses an example where rare was 

defined as less than two occurances and removed nearly half the features, or words 

(Forman, 2008:267). 

 In addition to removing rare words, we also remove stop words. Stop words, as 

previously discussed, are words that are extremely common but provide little information 

when differentiating between classes. We use a 571-word stop word list created by the 
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SMART System (Salton, 1971). We find the stop word list available for public use at 

ftp://ftp.cs.cornell.edu/pub/smart/english.stop. To match the formatting of our analysis 

we removed apostrophes from the stop word list, which reduced the unique word count 

on the stop word list to 563 words. We removed 489 words from our dataset related to 

those on the stop word list. 

 Next, we remove misspelled words from our analysis set. The Format 5s are 

professional documents; therefore, the documents should have minimal errors in spelling. 

Any additional words in the analysis increase the complexity of analysis through the 

consideration of irrelevant words. We enter the current vocabulary into Word
®
 and use 

VBA to separate words identified as misspelled by Word
® 

(Microsoft, 2010b). See 

Appendix G for the VBA code for this operation. By first sorting the words identified as 

misspelled by frequency, we search through the most commonly misspelled words for 

words commonly used in EVM analysis. We consider the possibility that high 

frequencies of misspelled words may represent deliberate usage. Meaning, a word 

identified as misspelled with a high frequency of usage should remain for consideration 

due to its accepted use in EVM analysis. For example, Word
®
 identifies eac as a 

misspelled word, due to case folding, when we know this word as an accepted acronym 

used frequently in EVM analysis. We identify 45 words as exempt from the list of 9,108 

words identified as misspelled. Reference Appendix H for a list of words exempted 

words. After removing rare words, stop words, and misspelled words from our analysis 

our dataset consisted of 1,303 monthly observations with 8,337 unique words and a total 

word count of 5,876,740. This initial screening of words represents a 77.89% reduction in 
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the number of unique words for analysis, but only a 53.94% reduction in total word 

count.  

 Based on the performance improvement found in Dowling, Miller, & White, 

(2012), we began the multinomial Naïve Bayes classifier with the intent to incorporate 

the model developed from the multinomial Naïve Bayes classifier into the Multivariate 

Classification model. To ensure the validity of this approach, we identified the 201 

monthly CPRs in our dataset used in the Multivariate Classification validation set. Once 

we identified these observations, we excluded them from our dataset. This ensured that 

information from the final validation set does not contaminate our model building process 

thus providing an unfair advantage during validation. After this, we also removed the first 

two months of observations from each program. We use these two observations in 

combination with the third month for the standard deviation calculations mentioned in 

Table 7. Additionally, we discount six months of observations from the end of each 

program used to calculate the 6-month change and subsequently label the data in the 

appropriate class.  

 From the reduced sample, we now have 808 monthly program observations to 

construct the validation set and training set used in the multinomial Naïve Bayes 

classifier. Using JMP
®
, we randomly select 20% of the observations for a validation set. 

This provides two validation sets and our final LOOCV method. From this multistage 

validation method we gain insight into the learning behavior of the multinomial Naïve 

Bayes model as we continue to add more data. 
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Limitations 

In July of 2012, the Office of the Under Secretary of Defense for Acquisition, 

Technology, and Logistics (OUSD(AT&L)) provided guidance on the Integrated 

Program Management Report (IPMR). As previously mentioned, the IPMR contains 

Formats 1 through Format 5. In this guidance, OUSD(AT&L) requires contractors submit 

Format 5s in a “human readable” format (Department of Defense, 2012c). While all 1303 

monthly CPRs contained human readable files, not all files contained searchable text 

files. In other words, a human reader is capable of observing the file, reading, and 

interpreting the text, but when we attempt to convert the file to a TXT file, the computer 

is unable to recognize the text in a meaningful way. This problem affects 34 monthly 

CPR files in our dataset. In cases where the words of a document provide no clear 

evidence for one class or another, we use the prior probability of a document occurring in 

class c to classify the document (Manning, Raghavan, & Schutze, 2008:239). We also use 

this method for the 10 data gaps found in the EVM dataset; in the multivariate 

classification, we addressed these gaps using linear interpolation. 

We see from Table 3, in Chapter II, analysis of Format 1 data follows specific 

formulas and structured analysis. In Format 5 data, there is very little consistency in form 

or function of the reports. Some programs meet the intent of the Format 5, as described in 

Table 2, by providing PDF documents consisting of charts and detailed variance analysis. 

Others simply have an Excel sheet that provides a short explanation of variances 

experienced by the program. We compiled all sections labeled Format 5 in each program, 

instead of attempting to comb through all 1303 documents to identify directly comparable 
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sections of the Format 5 across programs. This method may have inadvertently 

introduced noise features, or words that may increase the classification error for new 

observations (Manning, Raghavan, & Schutze, 2008:251). Manning, Raghavan, & 

Schutze (2008) argue the multinomial Naïve Bayes classifier is robust against these noise 

features minimizing the impact of this limitation on our analysis (Manning, Raghavan, & 

Schutze, 2008:249). 

Multinomial Naïve Bayes Classification Model Building 

In Chapter II, we outlined the application of the Naïve Bayes Classifier. Here we 

discus two methods we applied to improve the performance of the Naïve Bayes Classifier 

prior to validation. First, we provide our approach to add-  smoothing, and then 

transition to specify our feature selection methodology. We then discuss the analysis of 

the development data, and end our model building discussion by describing our model 

selection process and validation of the selected model.  

Add-  smoothing 

Earlier, we discussed the generalization of the Laplace Smoothing to add-  

smoothing in Equation 10. We were unable to find conclusive support for a single value 

when applying add-  smoothing. To ensure a thorough analysis, we systematically 

explore different levels of   for inclusion in the final model. We develop a baseline of 

performance by applying the Laplace smoothing, as defined in Equation 9. Next, we 

explored the effect the value of   on the Naïve Bayes classifier by testing a wide spread 

of values. We use Equation 31 to calculate our value for   and later provide further detail 
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concerning the application of these values in our discussion on analysis of the 

development data. Let  

 Equation 31 Add-  smoothing   value Rate 

   
 

 
 
   

   where         

 

 

(31) 

 

In addition to add-  smoothing, we also consider the impact the number of words, 

or features, included in our analysis. When evaluating the impact of words for 

consideration in the model, we use feature selection. Feature selection seeks to 

accomplish two goals. First, feature selection seeks to improve the efficiency of the 

Naïve Bayes classifier by reducing the number of words in the vocabulary. Secondly, 

feature selection improves accuracy by reducing the number of noise features in the 

vocabulary (Manning, Raghavan, & Schutze, 2008:251).  

Feature Selection 

Within the field of machine learning, there are many methods available for feature 

selection (Liu & Motoda, 2008). We selected mutual information (MI), a common feature 

selection method, for use in this analysis (Manning, Raghavan, & Schutze, 2008:252-

255). “MI measures how much information the presence/absence of a word contributes to 

making the correct classification decision on c” (Manning, Raghavan, & Schutze, 

2008:252). We calculate the MI of a word t represented by the random variable   in 

some class   by evaluating Equation 32. 
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 Equation 32 Mutual Information 

       
   

 
    

    

      
 

   

 
    

    

      
 

   

 
    

    

      
 

   

 
    

    

      
 

 

 

(32) 

where the Ns are the counts of documents that contain the values       (for the 

documents containing word  ),    = 0 (for the documents not containing word  ),      

(the document is in class c), and      (the document is not in c) (Manning, Raghavan, 

& Schutze, 2008:252). To clarify further, we have provided an example below.  

                                 

                            

                                

 

       
 

   
    

     

            
 

   

   
    

       

                

 
 

   
    

     

            
 

   

   
    

       

                
  

          

We apply this calculation to each of the words in our vocabulary and record the 

resulting MI value. Following the MI calculations, we must decide how many words to 

include in the analysis. Manning, Raghavan, & Schutze (2008:251) detail a feature 

selection algorithm that returns k words. Due to the varied application of MI thresholds, 

we find no generally accepted threshold for MI or a recommended number of k words to 

include in the analysis. In the absence of clear guidance, we explored a range of possible 

minimum MI thresholds.  
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An example provided by Manning, Raghavan, & Schutze (2008:253:254) defines 

high MI values ranging from as high as 0.19 to as low as 0.0004. We believe testing 

values between 0 and 0.01 by 0.001 increments provides the appropriate level of analysis 

for our applications. Each increment increase in the MI threshold increases the required 

information a word must contribute represented by MI for a specific word. This 

restriction reduces the number of words available in our analysis vocabulary. This 

reduction in vocabulary leads to improved efficiency of the Naïve Bayes classifier and 

reduces the noise features, the two goals of feature selection previously discussed. 

We propose an additional constraint on the MI feature selection method. When a 

rare word, such as forge, contains no relevance to a specific class, for example Nominal 

Risk, but by chance all instances of the word from our training set fall in the Nominal 

Risk category, we may produce a classifier that incorrectly assign documents to a class. 

Manning et al. defined this accidental occurrence as overfitting (Manning, Raghavan, & 

Schutze, 2008:251). In our example, this overfitting results in a maximum MI; thus we 

combat the problem of overfitting by requiring any word observed in only one class occur 

in more than 5% of the total number of documents in our dataset. If the word does not 

meet the 5% criteria, we do not consider the word in our analysis. This additional 

criterion reduces, but does not eliminate, the risk of overfitting by reducing the chances 

the word falls into a specific class accidentally.  

Model Development 

Once we determined the test values for add-  smoothing and MI thresholds, we 

turned our attention to analysis of the training data. We accomplished this analysis by 
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developing potential models for each value of   given a specific value for MI threshold 

using Equation 33. 

Equation 33. Class Maximum A Posteriori-Final 

     
      

   
     

  

 
     

     

               
      

   

 

 

(33) 

where   is the total number of documents,    is the total number of documents 

belonging to class c,     is the number of times the word t appears in the training 

document from class c,   is our smoothing value from Equation 31, and       is the 

cardinality, or number of words after applying the MI reduced vocabulary, of the training 

data. We record the predicted class using the classification matrix from Figure 6. The 

resulting classification matrix serves as inputs to a table with headings listed in Table 11. 

Upon completion of the model development phase, we produce 88 different models, one 

for each value of   given a specific threshold for MI. 

Table 11. Model Performance Headings 

MI Threshold Error Rate = Errors/N High-Risk given High-Risk = 

    

Word Count = |V| Nominal Risk | Nominal Risk 

=     

Recall  (see Equation 27) 

  value Nominal Risk | High-Risk = 

    

Precision  (see Equation 28) 

Errors =         High-Risk | Nominal Risk = 

    

F measure (see Equation 29 

Model Selection 

From Table 11, we use Recall, Precision, and F measure to evaluate each model 

under consideration. We previously discussed the application of Recall, Precision, and F 

measure in our discussion on the multivariate classification model selection. To reiterate, 
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the Recall measures the fraction of observations classified as High-Risk that belong to the 

High-Risk population. Precision measures the number of observations belonging to High-

Risk population classified as High-Risk by the classification model. F measure, our final 

evaluation criteria combines Recall and Precision using a weighted harmonic mean. We 

evaluate the F measure with a      . Again, this emphasizes Precision in support of 

correctly identifying a large proportion of the High-risk programs while minimizing the 

false detections. We select the model with the highest F measure to go forward for 

validation. 

Validation 

Once we have a selected model, we perform the same validation method outlined 

for the multivariate classification model. We accomplish this by first applying our 

selected model to each observation and record the predicted class in a classification 

matrix as in Figure 6. We then calculate Recall as defined in Equation 27. Secondly, we 

combined the training data and validation data into one dataset and evaluated our model 

using the holdout procedure.  We then follow the holdout procedure process detailed 

earlier. We record the results of the holdout procedure in a classification matrix and use 

these results to calculate          as defined in Equation 30 and Recall. Again, the 

expected actual error rate reflects the long-term error rates we would expect over an 

extended period beyond the data currently available for analysis. The final step in our 

validation method, included validation against the multivariate classification withhold. 

This serves two purposes. First it provides the multinomial Naïve Bayes input to the 
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hybrid model discussed shortly. Secondly, we see the performance of the model using 

additional data and a separate validation set. 

Multinomial Naïve Bayes Classifier – Alternative Parameterization 

The alternative parameterization of the multinomial Naïve Bayes classifier 

mirrors those proposed for the multivariate classification model. First, we sought to 

redefine the high-risk program class allowing for a more accurate reflection of the DOD 

accepted definition of risk. Secondly, we tested the impact of extending the risk 

identification period from 6-months to 12-months. 

EAC change greater than 5% 

 Our analysis methods do not change due to a change in the definition of the high-

risk program class. We applied the same methodology already discussed for the 

multinomial Naïve Bayes classifier using the new labels. Again, this produces risk 

categories that more closely align with the DOD definition of risk. 

Extended time horizon 

 In this model, we continued the use of the new definition of high-risk programs 

discussed earlier and attempted to extend the identification horizon to 12-months. Prior to 

separating a 20% validation set, the 12-month decrement resulted in a database consisting 

of 816 observations. Given the new database and validation set, we analyzed the data 

using the multinomial Naïve Bayes classifier method previously discussed to select a 

model for validation. We execute the same validation methodology provided earlier for 

the multinomial Naïve Bayes classifier. 
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Hybrid Multivariate Classification and Multinomial Naïve Bayes Classifier 

Dowling, Miller, & White, 2012 introduced the idea of combining data from the 

Format 1 and Format 5 using Statistical Process Control Methods. Dowling et al. 

accomplished a unified model by using a weighted average of the model outputs of 

Dowling (2012) and Miller (2012). In Figure 2, we see this unified model provided better 

outputs than either model on its own; specifically, we saw an 19.96% and a 24.61% 

improvement in the probability of correctly identifying high-risk programs respectively. 

We propose an alternative hybrid model using our multivariate classification and 

multinomial Naïve Bayes classifier. Initially, we continue the use of the 6-month 

detection timeframe as those used by Dowling et al. (2012) for comparability. However, 

we later we discuss alternative parameterization for this method as well.  

Our hybrid model begins by applying the validated multinomial Naïve Bayes 

classifier from our earlier analysis. For each observation, we collect the predicted class as 

assigned by the Naïve Bayes classifier and introduce a new variable, NB_Pred_Class, to 

the multivariate classification variable list. We characterize this variable as a categorical 

variable with a value of 1 if the multinomial Naïve Bayes classifier predicted the 

observation a high-risk program and 0 otherwise. We match the monthly CPR in the 

multinomial Naïve Bayes classifier with the appropriate monthly CPR in the multivariate 

classification model.  

With the new categorical variable included in the multivariate analysis, we 

execute the multivariate classification as discussed in the multivariate classification 

section earlier. This includes performing the forward stepwise discriminant analysis, 
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backward stepwise discriminant analysis, and modified RGSS. We select the best 

performing model as outlined in the multivariate classification section. 

In the vocabulary extraction section of our discussion on the multinomial Naïve 

Bayes Classifier, we explained a partitioning of the multivariate classification validation 

set from the rest of the data considered. This data provides an opportunity to validate our 

hybrid approach and measure its performance. We begin by applying the multinomial 

Naïve Bayes classifier to the validation set. Next, we record the predicted classes and 

introduce the new categorical variable to the multivariate classification validation set. We 

validate the selected best performing hybrid classification model against both the 20% 

withhold and Lachenbruch’s holdout procedure. 

Alternate Hybrid Model Parameterization 

As with the previous alternate model parameterization, we redefine the high-risk 

class and now evaluate the 6-month model only looking for programs expected to 

experience cost growth of greater than five percent. Additionally, we extend the 

timeframe of our high-risk program detection from the original 6-months to 12-months. 

Again, we use the new definition of high-risk programs as those programs expected to 

experience cost growth of greater than five-percent. Following each of the new 

parameterizations, we execute the analysis in the same way outlined in the hybrid 

multivariate classification and multinomial Naïve Bayes classifier section. 

Summary 

In this chapter, we provided a detailed description of the analysis conducted for 

this study. We discussed the four distinct components for our analysis. First, we began 
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detailing the analysis of EVM data using Multivariate Classification techniques to 

identify high-risk acquisition programs. Secondly, we introduced the multinomial Naïve 

Bayes classification technique on the Format 5 data to identify high-risk programs. Next, 

we detail the hybrid model consisting of the Multivariate Classification technique and the 

multinomial Naïve Bayes classifier to produce a new risk detection method. Lastly, 

alternative parameterization for each component of the analysis provided a realignment 

of our definitions of risk to those accepted by the DOD and provided an improved lead-

time to administer mitigation plans for programs identified as high risk. In the next 

chapter we show the results of our analysis. 
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IV.  Analysis and Results 

In previous chapters, we discussed the methods applied to our dataset, the 

literature that supports these methods, and outlined the research questions we sought to 

answer. Here we provide empirical evidence showing the viability of these alternative 

risk detection methods. We accomplish this in three parts. First, we present models for 

identifying programs at risk of a 6-month cumulative change in EAC of greater than 5% 

in magnitude. Next, we discuss the 6-month models seeking to identify programs at risk 

of a cumulative increase in the EAC of 5%. We then provide our results from extending 

the identification timeframe from 6-months to 12-month of programs at risk of a 

cumulative increase in the EAC of greater than 5%. Finally, we conclude this chapter 

presenting the single best performing model for each definition of high-risk programs. 

6-month Risk Models (Cumulative Change of Greater Than 5% in Magnitude) 

In this section, we present our results specific to the identification of programs 

classified at high risk of experiencing a cumulative change in the EAC of greater than 5% 

in magnitude six months from the current observation. We begin by outlining the results 

from our multivariate classification model. Next, we transition to the results associated 

with the multinomial Naïve Bayes text classifier. We then display the results provided by 

the hybrid classification model. Finally, we provide a summary of the validated models 

for each method.   
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Multivariate Classification Results 

In the Multivariate Classification Model Building section of Chapter III, we 

proposed three stepwise variable selection methods for developing potential models. We 

begin this section by detailing the results of the forward stepwise discriminant analysis, 

backward stepwise discriminant analysis, and conclude with the results from the modified 

RGSS. In Figure 9, we provide a side-by-side comparison of the top two potential models 

from each of these selection methods. We seek lower APER values but higher Precision, 

Recall, and F measure values. For comparison purposes, we included the training set 

results from Dowling (2012) converted to match our detection of high-risk programs, or 

the cumulative change over six months.  

We caution the readers, Dowling (2012) optimized his model to identify programs 

at risk of a one-month change in the EAC greater than 5% in magnitude within six 

months. However, we optimized our models to detect the cumulative change in EAC in 

exactly six months from the current observation. This implies the results may not allow a 

direct comparison but still provides the closest proxy model available for comparison.   

Additionally, we include an overly simplistic model in which we classify all 

monthly CPRs high-risk. By doing so, we provide a baseline comparison which we can 

use to determine if any model can improve on this untrained classification. By default, 

this model will score a perfect one for Precision due to the simplistic classification rule; 

therefore, we believe the Precision and F measure for the All High-Risk model provides 

no useful comparison but we call the reader’s attention to the APER and Recall for useful 

comparisons. 
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Figure 9. Multivariate Classification Model Comparison 

As Figure 9 shows, the performance of the modified RGSS models strictly 

dominate all other methods of model selection for both APER and Recall measures. The 

forward selection method produces identical APER measures for the top two models but 

differs slightly in the quality of the Recall measure. We see the same effect in the 

modified RGSS models. The differences between these models traces their roots to the 

variables selected for each model. We show in Table 12, the performance of each model 

and the variables that comprise each one. It becomes clear, predictive quality of each 

variable influences performance and not the total number of variables included in the 

model. For example, simply comparing Backward Stepwise1 and Backward Stepwise2, 

which differ by one variable, represents a 51.88% increase in APER from Backward 

Stepwise 1 to Backward Stepwise2. 

Forward 
Stepwise1 

Forward 
Stepwise2 

Backward 
Stepwise1 

Backward 
Stepwise2 

Modified 
RGSS1 

Modified 
RGSS2 

Dowling 
(2012) 

All High-
Risk 

APER 0.2748 0.2748 0.3936 0.5978 0.2550 0.2550 0.3188 0.6869 

Precision 0.3557 0.3597 0.7708 0.9447 0.4704 0.4664 0.4380   

Recall 0.6040 0.6026 0.4286 0.3376 0.6230 0.6243 0.5405 0.3131 

F measure 0.3876 0.3912 0.6646 0.6948 0.4946 0.4913 0.4552   
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Table 12. Multivariate Classification Model Output 

 

In our variable selection discussion in the multivariate classification model 

building section of Chapter III, we identified limitations associated with both the forward 

and backward stepwise variable selection method. We see from Figure 9 and Table 12 the 

modified RGSS’ ability to explore more of the feature space allows the identification of 

higher performing models. As evident in Table 13, modified RGSS proceeds through 25 

generations, each generation terminating based on the p-value convergence criterion 

specified in Chapter III. 

 

Forward Stepwise1 Forward Stepwise2

Backward 

Stepwise1

Backward 

Stepwise2 Modified RGSS1 Modified RGSS2

Generation 3 3

Iterations 10 11 25 26 64 67

P-Value to Enter 0.009576634 0.015903805 0.00704813 0.059177116 0.011115686 0.022325528

P-Value to Remove 0.002500703 0.009576634 0.01115027 0.014014678 0.014760797 0.01807075

APER 0.274752475 0.274752475 0.393564356 0.597772277 0.254950495 0.254950495

Precision 0.355731225 0.359683794 0.770750988 0.944664032 0.470355731 0.466403162

Recall 0.604026846 0.602649007 0.428571429 0.337570621 0.623036649 0.624338624

F measure 0.387596899 0.391229579 0.664621677 0.694767442 0.494596841 0.491257286

Variable count 8 9 15 16 12 13

Variables CV% CV% CPI CPI % Complete % Complete

% Difference 

Between ML and B

% Difference 

Between ML and B TSPI TSPI CV% CV%

CPI 1 Month Change CPI 1 Month Change CV% CV%

% Difference 

Between W and B

% Difference 

Between ML and B

TSPI 2 Month 

Change

TSPI 2 Month 

Change

% Difference 

Between ML and B

% Difference 

Between ML and B StDev CPI StDev CPI

Joint Joint StDev CPI StDev CPI StDev SPI StDev SPI 

Comm. Comm. CV% StDev TCPI StDev CV% StDev CV% StDev

Radar Facility CPI 1 Month Change CV% StDev SPI 1 Month Change CPI 1 Month Change

Small Radar SCI 1 Month Change CPI 1 Month Change

TSPI 2 Month 

Change SPI 1 Month Change

Small CPI 2 Month Change SCI 1 Month Change Comm.

TSPI 2 Month 

Change

CV% 2 Month 

Change CPI 2 Month Change Facility Comm.

Comm.

CV% 2 Month 

Change Radar Facility

Facility Comm. Small Radar

Missile Facility Small

Radar Missile

Small Radar

Small
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Table 13. Multivariate Variable Selection Method Breakdown 

Model Type Generations Steps Average Steps per 

generation 

Forward Discriminant 
Analysis 

1 12 12 

Backward Discriminant 
Analysis 

1 26 26 

Modified RGSS 25 441 17.64 
 

After identifying Modified RGSS1 as our best performing model, we executed the 

two validation methods discussed in our multivariate classification validation section in 

Chapter III. We take this opportunity to reiterate the important distinction between the 

APER and the        . The APER shows the performance of the model on data withheld 

prior to model building. As previously discussed, this withheld data forces us to build a 

model on data that does not include all available data, thus producing a model that does 

not represent our entire dataset. We overcome this limitation by executing the 

Lachenbruch’s holdout procedure, or LOOCV, we outlined in Chapter III. This method 

provides a more representative model of the entire dataset and produces a nearly unbiased 

estimate of the long-term error rate. As shown in Figure 10, the APER performance of 

the modified RGSS1 (withhold validation) marginally outperforms the Dowling (2012) 

proxy model. Additionally, we see modified RGSS1 (LOOCV) significantly outperforms 

when measured by Recall representing a 171% improvement in the model’s ability to 

identify correctly, programs belonging to the high-risk class when compared to the proxy 

model. 
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Figure 10. Multivariate Classification Validation Performance 

Multinomial Naïve Bayes Classifier Results 

In Chapter II and Chapter III, we described the application of the multinomial 

Naïve Bayes classifier to the Format 5 data from the monthly CPRs. In this section, we 

detail our results from the application of the aforementioned methods. We begin by 

outlining the trends identified in our add-  smoothing and MI thresholds. Next, we 

provide results of the top five models produced by the multinomial Naïve Bayes classifier 

prior to the partial validation. We conclude this section by providing the validated results 

from our best performing model using both the partial and full validation datasets. 

 In Chapter III, we discussed how add-  smoothing and MI thresholds potentially 

influence the performance of the Naïve Bayes classifier. As Figure 11 shows, we see 

lower values of   produce, on average, lower error rates in our training set. Additionally, 

Figure 12 indicates the MI thresholds influence the models in a much more substantial 

way. Figure 13 shows a sharp decrease in the number of words considered in our models. 

Modified RGSS1 
(Withhold 
Validation) 

Modified RGSS1 
(LOOCV) 

Dowling (2012) All High-Risk 

APER 0.3234 0.2758 0.3235 0.7556 

Precision 0.4000 0.4353 0.2143   

Recall 0.5000 0.5823 0.2143 0.2444 

F measure 0.4167 0.4585 0.2143   
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We leverage these two performance-improving methods and evaluate all combinations 

discussed in Chapter III. Once we developed all potential models, we evaluate each 

model’s F measure. Figure 14 provides the top five performing models arranged by F 

measure. We select Model 65 for validation due to its performance, as measured by its F 

measure, compared to all other models (see Chapter III, page 54 for discussion on 

multinomial Naïve Bayes text classifier model selection discussion).  

 

Figure 11. Average Error Rate vs. Add-  Smoothing level for Naïve Bayes text classification, 6-

month cumulative change in EAC greater than 5% in magnitude (The x-axis shown as qualitative 

scaling evaluated at    
 

 

   
 ,          

 
Figure 12. Average Error Rate vs. MI Threshold for Naïve Bayes text classification, 6-month 

cumulative change in EAC greater than 5% in magnitude 
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Figure 13. 6-Month Model Vocabulary vs. MI Threshold represents decreasing word count as MI 

increases 

 
Figure 14. Multinomial Naive Bayes Text Classifier Model Comparison 

In Chapter III, we described the Naïve Bayes text classification data as 80% of the 

data available for the multivariate classification method. Initially, our training set 

consisted of 80% of the 80% available and our validation withhold consisted of the 20 % 

remaining. Here, we refer to this validation as partial validation. Shortly, we discuss the 

validation of our model against the 20% withhold from the multivariate classification 
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method; we describe this as full validation. In Figure 15, we show the performance of our 

model against the partial validation results. We have also provided the simple 

classification model previously discussed which classifies all monthly CPR observations 

as high-risk. We see the multinomial Naïve Bayes provides a 69.67% improvement in 

correctly identifying high-risk programs and a 130% improvement in overall accuracy.  

 
Figure 15. Naive Bayes Partial Validation 

Once we accomplished the partial validation, we found it necessary to validate the 

model against the full validation set. This provides us several advantages such as the 

ability to compare results from Miller (2012) with a more compatible scale and provides 

an opportunity to understand the learning behavior as we add data to the model. We see 

from Figure 16, the multinomial Naïve Bayes classifier improves on all measures 

provided. Most significantly, we improve the ability to identify correctly programs 

belonging to the high-risk class by 43% and improve overall accuracy by 24% over those 

found in the Miller (2012) proxy model. In Figure 17, we see a downward trend of unique 

words meeting the MI threshold as we include additional data in the model. This implies 
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as additional data becomes available, the multinomial Naïve Bayes classifier learns to 

differentiate further between classes with fewer words meeting the MI threshold. 

 
Figure 16. Text Analysis Full Training Set Model Comparison 

 
Figure 17. Naive Bayes Vocabulary Trends 

 

We again caution the readers by saying Miller (2012) sought to optimize the 

detection of a one-month change in the EAC greater than 5% in magnitude within six 

months, much like Dowling (2012). Our detection method seeks to identify these high-

risk programs exactly six months from the current observation. However, the numbers 

associated with Miller (2012) reflect the proxy model adapted from Miller and applies 

our definition of a successful detection.  
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We see from Figures 15 and 16, the Naïve Bayes text classifier performs well 

when validated using the partial validation set and shows improvement when scaled up to 

the full training dataset. In Figure 18, we provide the results from our full validation set 

as well as the LOOCV method. It is clear the Naïve Bayes classifier provides a 

significant advantage over the proxy text classification method and baseline measure. 

When we compare the results from Figure 18, we see the Precision and Recall measures 

show a tendency toward stabilizing at these levels. The validated results show a strong 

performance when compared with the Miller (2012) proxy and All High-Risk models. 

Specifically, when we compare the ability of Naïve Bayes LOOCV classifier to identify 

correctly a high-risk program, we see an 87% improvement over the simple untrained 

classifier and a 189% improvement over the Miller (2012) proxy model. 

 
Figure 18. Text Analysis Full Validation Set 

 

Naïve Bayes 
(Model 65 - 
Withhold 

Validation) 

Naïve Bayes 
(Model 65-

LOOCV) 
Miller (2012) All High-Risk 

Accuracy 0.7329 0.7391 0.6324 0.2919 
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Hybrid Multivariate and Naïve Bayes Text Classification Model 

In this section, we relay the results from our hybrid model. We accomplish this 

first by detailing our best performing potential models using the forward stepwise 

discriminant analysis, backward stepwise discriminant analysis, and modified RGSS. 

Next, we show the performance of the selected model against the withheld validation data 

and the LOOCV method. We conclude this section by displaying a summary of the best 

performing model from the multivariate classification, multinomial Naïve Bayes 

classifier and our hybrid classification model. 

We begin with Figure 19, which shows the top two performing models for each 

model selection method with one exception. The backward stepwise discriminant method 

found one significant model prior to meeting the stopping criteria laid out on page 41. 

Additionally, we include a proxy to the weighted average model produced by Dowling et 

al. (2012) for comparison purposes and the simple untrained classifier. 

 
Figure 19. Hybrid Classifier Model Comparison 
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Dowling et 
al. (2012) 

All High-
Risk 

APER 0.2240 0.2240 0.2327 0.2215 0.2240 0.3624 0.3131 

Precision 0.7233 0.7233 0.6877 0.7154 0.7233 0.6423   
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We see from Figure 19, these models tend to perform in very similar fashion. For 

example, Forward Stepwise1, Forward Stepwise2, and Modified RGSS2 mirror each 

other. Based on our hybrid model selection criteria (see page 58), we chose modified 

RGSS1 due to its outperformance of all other models when evaluated on APER. In Table 

14, we provide the variable composition for each of the models from Figure 19. A 

common theme appears when we consider the repetition of variables between models. In 

Chapter V, we provide further insight to these patterns and our interpretations of them. 

Table 14. Hybrid Classifier Model Output 

 

Forward Stepwise1 Forward Stepwise2 Backward Stepwise1 Modified RGSS1 Modified RGSS2

Generation 11 1

Iterations 1 2 27 140 4

P-Value to Enter 3.56761E-05 0.001311302 0.035161701 0.000982009 3.56761E-05

P-Value to Remove 0 3.56761E-05 0.014053896 0.001988425 0

APER 0.224009901 0.224009901 0.232673267 0.221534653 0.224009901

Precision 0.723320158 0.723320158 0.687747036 0.71541502 0.723320158

Recall 0.62244898 0.62244898 0.614840989 0.628472222 0.62244898

F measure 0.700612557 0.700612557 0.671814672 0.696153846 0.700612557

Variables Count 1 2 14 3 1

Variables NB_Pred_Class Small CPI TSPI 2 Month Change NB_Pred_Class

NB_Pred_Class TSPI Small

CV% NB_Pred_Class

% Difference Between 

ML and B

StDev CPI

CV% StDev

CPI 2 Month Change

CV% 2 Month Change

AF

Army

Joint

Helicopter

Small

NB_Pred_Class
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We see no difference in performance between Forward Stepwise1, Forward 

Stepwise2, or Modified RGSS2. From Table 14, we see that Forward Stepwise1 and 

Modified RGSS2 results in the same one variable model. Additionally, we see Forward 

Stepwise2 results in a model with two variables but no difference in performance. In 

Forward Stepwise2, the variable small proves statistically significant in discriminating 

between the two classes, evidenced by a p-value of 0.000036. This significance in 

discriminating between classes does not provide any additional classifying information 

beyond that contained in the variable NB_Pred_Class. This results in a less parsimonious 

model than the one variable models seen in Forward Stepwise1 and Modified RGSS2 

with identical performance. 

Next, we consider the validation results using both the withheld validation data 

and the LOOCV methods. In Figure 20, we see the results of the hybrid classification 

provide superior performance to both the modified weighted model produced by Dowling 

et al. (2012) and the simple untrained classification model. Specifically, by using the 

LOOCV Hybrid Classification Model we see a 62% reduction in the APER over the All 

High-Risk classifier and 39% reduction in the APER from that found in the Modified 

Weighted Model adapted from Dowling et al. (2012). 
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Figure 20. Hybrid Classification Validation Results 

 

Section Summary 

We began this section by providing the results from our three model-building 

processes: forward stepwise discriminant analysis, backward stepwise discriminant 

analysis, and modified RGSS. Following this, we showed the performance of the best 

performing model against a withheld validation set and a LOOCV method. Finally, we 

conclude this section with a comparison across analysis methods using validated models 

from the multivariate classification method, multinomial Naïve Bayes method, and the 

Hybrid multivariate classification methods. In Figure 21, we see a two models tie for best 

performance overall, expressing identical performance. The Multinomial Naïve Bayes 

Classifier and the Hybrid Classifier dominate over every measure against all other models 

when considering long-term performance using LOOCV. We discuss this further and 

provide possible causes for this phenomenon in Chapter V. In the next section, we detail 
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the results of applying the methods used here to identify newly defined high-risk 

programs. 

 
Figure 21. Validated Model Comparison Across Analysis Methods 

6-month Risk Models (Cumulative Change of Greater Than 5%) 

In the previous section, we detailed our findings concerning the detection of 

programs at risk of experiencing a 6-month cumulative change in EAC of greater than 

5% in magnitude. Here, we provide the results of our analysis for identifying programs at 

risk of experiencing a 6-month cumulative change of greater than 5%. Meaning, we only 

consider the negative consequences of cost growth as problematic as opposed to some 

magnitude of change (i.e. we ignore under budget programs).We first consider the 

multivariate classification methods. We again transition to the results of the multinomial 

Naïve Bayes classifier and display the results from our hybrid classification model. We 

conclude with a comparison across methods showing the best performing analysis 

method.  
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All High-
Risk 
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Multivariate Classification Results 

We begin our multivariate classification results by comparing the top performing 

models from our three model building processes. Again, we use forward stepwise 

discriminant analysis, backward stepwise discriminant analysis, and modified RGSS. We 

follow this comparison by providing the results from our validation methods using both 

the withheld validation data and LOOCV.  

In this multivariate classification analysis, we again seek models that provide the 

lowest APER. As shown in Figure 22, Modified RGSS1 again provides the best results 

relative to the other models, with modified RGSS2’s performance providing a close 

second best. This suggests the modified RGSS method continues to search beyond the 

forward and backward stepwise discriminant analysis methods to find optimal solutions. 

We accomplish this by finding different statistically significant combinations of 

variables. In Table 15, we provide the composition of each model displayed in Figure 22. 

The models share many variables but the APERs vary widely. 

 
Figure 22. Multivariate Classification Model Comparison 

 

Forward 
Stepwise1 

Forward 
Stepwise2 

Backward 
Stepwise1 

Backward 
Stepwise2 

Modified 
RGSS1 

Modified 
RGSS2 

All High-
Risk 

APER 0.2488 0.2599 0.4802 0.5235 0.2277 0.2364 0.6117 

Precision 0.4115 0.3717 0.8805 0.9071 0.4558 0.4912   

Recall 0.5776 0.5526 0.3554 0.3377 0.6280 0.5936 0.2797 

F measure 0.4366 0.3977 0.6796 0.6784 0.4822 0.5087   
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Table 15. Multivariate Classification Model Composition 

 

We executed our two-method validation on the Modified RGSS1 model. From 

Figure 23, we see that both validation methods provide relatively close results, but 

performs slightly worse than the training set. This may evidence over fitting in the 

training set, but we see the validation sets show relatively stable performance over 

several measures.  

Forward 

Stepwise1

Forward 

Stepwise2

Backward 

Stepwise1

Backward 

Stepwise2

Modified 

RGSS1

Modified 

RGSS2

Generation 14 14

Iterations 11 10 25 26 232 233

P-Value to Enter 0.039873165 0.015267149 0.01271086 0.03486467 1.76825E-08 0.002508005

P-Value to Remove 0.016175135 0.023174606 0.01292904 0.01271086 0.014721308 0.009749843

APER 0.248762376 0.25990099 0.48019802 0.523514851 0.227722772 0.236386139

Precision 0.411504425 0.371681416 0.880530973 0.907079646 0.455752212 0.491150442

Recall 0.577639752 0.552631579 0.355357143 0.337726524 0.62804878 0.593582888

F measure 0.436619718 0.397727273 0.679644809 0.678358703 0.482209738 0.508707608

Variable count 11 10 15 16 10 11

Variables SPI SPI TSPI TSPI SCI SPI

CV% CV% CV% CV%

% Difference 

Between ML 

and W SCI

% Difference 

Between ML 

and W

% Difference 

Between ML 

and B

% Difference 

Between ML 

and B

% Difference 

Between ML 

and B

% Difference 

Between W 

and B

% Difference 

Between ML 

and W

% Difference 

Between ML 

and B

CPI 1 Month 

Change StDev CPI StDev CPI SCI StDev

% Difference 

Between W 

and B

CPI 1 Month 

Change

TSPI 2 Month 

Change CV% StDev TCPI StDev CV% StDev SCI StDev

TSPI 2 Month 

Change Joint

CPI 2 Month 

Change CV% StDev

CPI 1 Month 

Change CV% StDev

Joint Comm.

CV% 2 Month 

Change

CPI 2 Month 

Change

TSPI 2 Month 

Change

CPI 1 Month 

Change

Comm. Plane Joint

CV% 2 Month 

Change Comm.

TSPI 2 Month 

Change

Plane Radar Comm. Joint Radar Comm.

Radar Small Facility Comm. Small Radar

Small Ship Facility Small

Plane Ship

Radar Plane

Satellite Radar

Small Satellite

Small
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Figure 23. Multivariate Validation 

 

Multinomial Naïve Bayes Classifier Results 

We begin detailing our results from our multinomial Naïve Bayes analysis by 

showing the effect of our add-  smoothing and MI thresholds on the error rate and 

vocabulary size. We found no comparable models and provide the simple untrained 

baseline model seen throughout our analysis for comparison purposes. As we saw from 

our previous analysis in identifying programs at risk for a change in the EAC of 5% or 

greater in magnitude, the  -level and MI thresholds strongly influenced the error rate. We 

see from Figures 24 and 25 that these models prove less sensitive to this effect when 

evaluating the  -level and MI threshold. For example, in Figure 11 of our prior 

multinomial Naïve Bayes classifier, we saw a 26% reduction of the average error rate as 

the MI increased. However, in Figure 25 we see a 16% reduction of the average error rate 

from the maximum to minimum levels. 
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Figure 24. Average Error Rate vs. Add-  Smoothing level for Naïve Bayes text classification, 6-

month cumulative change in EAC greater than 5% (The x-axis shown as qualitative scaling 

evaluated at    
 

 

   
 ,         

 

 

Figure 25. Average Error Rate vs. MI Threshold for Naïve Bayes text classification, 6-month 

cumulative change in EAC greater than 5% 

 

When comparing MI Threshold and Word Count, we find in Figure 26 a smaller 

vocabulary included in the analysis for this definition of high-risk over those found in our 

prior analysis. This seems to imply more ambiguity among the words in the high-risk 

category and nominal risk category due to a more restrictive definition of high-risk.  
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Figure 26. Model Vocabulary vs. MI Threshold represents decreasing word count as MI increases 

 

 We evaluated 88 different models with differing levels of MI threshold and add-  

smoothing. Figure 27 shows the top five performing models when measured by F 

measure. We see identical performance from models 63 and 64. In this case, we selected 

the model with the lower  -level. We see a 0.2% F measure performance difference 

between the highest performing model, Model 63, and lowest performing model, Model 

58.  

 
Figure 27. Multinomial Naive Bayes Text Classifier Model Comparison 

 

While the training data shows good performance, we must look to the validation 

results to understand how we expect the model to perform on new data. In concluding the 
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multinomial Naïve Bayes classifier portion of this section, we provide Figures 28 and 29 

to show two aspects of our model’s performance. First, in Figure 28, we see a reduction 

in words as more data becomes available. This seems to imply as more data and its true 

classification become available, we better differentiate words as important or not based 

on the mutual information provided by the word. Secondly, in Figure 29, we see an 

increase in performance as more data becomes available in the multiple stages of 

development. 

 
Figure 28. Vocabulary Learning 

 
Figure 29. Multi-Stage Validation 

 

Hybrid Multivariate and Naïve Bayes Text Classification Model 

In this section, we provide the result of our efforts to combine the multivariate 

classification and multinomial Naïve Bayes classifier to form a hybrid classification mod-
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el. In our prior definition of high-risk programs, we showed the hybrid model 

development produced a tight grouping of performance measures for each of our three 

model building methods. Similarly, we see in Figure 30, the hybrid model development 

again produces a tight grouping of performance measures for our new definition of high-

risk programs (those that experience a 6-month cumulative change in EAC greater than 

5%). Interestingly, we see identical performance for four of the five models displayed. In 

Table 16, we provide variable composition for each model. We see from this table all five 

models contain three variables in common and deviate very little in selecting highly 

predictive variables. Additionally, when we compare the average number of variables 

required for the multivariate classification method displayed in Table 15, we find a 67% 

reduction in the average number of variables required to produce a predictive model. We 

also see a 72% reduction in the APER and 123% improvement in our ability accurately 

identify high-risk programs over the All High-Risk model. 

 
Figure 30. Hybrid Classifier Model Comparison 

 

Forward 
Stepwise1 

Forward 
Stepwise2 

Backward 
Stepwise1 

Modified 
RGSS1 

Modified 
RGSS2 

All High-
Risk 

APER 0.2005 0.2005 0.2067 0.2005 0.2005 0.7203 

Precision 0.7035 0.7035 0.7080 0.7035 0.7035   

Recall 0.6260 0.6260 0.6130 0.6260 0.6260 0.2797 

F measure 0.6865 0.6865 0.6867 0.6865 0.6865   
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Table 16. Hybrid Classifier Model Output 

 

As mentioned in Chapter III, the lowest APER serves as our decision criteria for 

model selection in the multivariate classification and hybrid classification methods. We 

see identical performances from four models and see only two unique potential models, 

those represented by Forward Stepwise1, Modified RGSS1, and Forward Stepwise2, 

Modified RGSS2. We select the most parsimonious model for validation, resulting in the 

selection of Forward Stepwise1, or equivalently the Modified RGSS1.  

Next, we applied our model to the withheld validation data and concluded our 

validation by performing LOOCV. As Figure 31 shows, in comparison with the withheld 

validation data, our LOOCV experienced a performance improvement in both Precision 

and Recall. We show a 24% improvement in Precision and a 5% improvement in Recall. 

This suggests an improved ability to lower false negative detections within the high-risk 

class. When compared to the simple All High-Risk classification rule we see a 137% 

improvement in our ability to identify correctly programs at risk of increasing costs. 

Forward 

Stepwise1

Forward 

Stepwise2

Backward 

Stepwise1 Modified RGSS1 Modified RGSS2

Generation 2 2

Iterations 3 4 35 36 37

P-Value to Enter 0.021865126 0.020855237 0.025285243 0.021865126 0.020855237

P-Value to Remove 0.004219305 0.021865126 0.019577328 0.004219305 0.021865126

APER 0.200495050 0.200495050 0.206683168 0.200495050 0.200495050

Precision 0.703539823 0.703539823 0.707964602 0.703539823 0.703539823

Recall 0.625984252 0.625984252 0.613026820 0.625984252 0.625984252

F measure 0.686528497 0.686528497 0.686695279 0.686528497 0.686528497

Variable Count 3 4 6 3 4

Variables TSPI TSPI TSPI TSPI TSPI

CV% CV% CV% CV% CV%

NB_Pred_Class Small StDev CPI NB_Pred_Class Small

NB_Pred_Class CV% StDev NB_Pred_Class

Joint

NB_Pred_Class
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Figure 31. Hybrid Classification Validation Results 

 

Section Summary 

Much like the 6-month risk model seeking a cumulative change in EAC of greater 

than 5% in magnitude, we applied our multivariate classification method, multinomial 

Naïve Bayes classifier, and constructed a hybrid classification model. We conclude this 

section by providing a comparison across analysis methods using the LOOCV models 

from each method. As seen in Figure 32, the Hybrid classifier outperforms the 

multivariate classifier, the multinomial Naïve Bayes classifier, and simple untrained All 

High-Risk classification rule. We discuss possible causes for this further in Chapter V.  

 
Figure 32. Validated Model Comparison Across Analysis Methods 
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12-month Risk Models (Cumulative Change of Greater Than 5%) 

After evaluating our data for a 6-month cumulative change in EAC of greater than 

5% in magnitude and then focusing on only the positive cumulative change of greater 

than 5%, we extend the effective time horizon of our model from 6-months to 12-months. 

We accomplish this by performing the same analysis on our dataset as outlined in our two 

previous definitions. We begin by outlining our results from the multivariate 

classification model. Then, we transition to the multinomial Naïve Bayes classifier. 

Finally, we provide our results for a hybrid model of the multivariate classification and 

multinomial Naïve Bayes classifier. We conclude by providing a cross-method 

comparison of performance for each validated model.  

Multivariate Classification 

We begin this section by providing a comparison of our top two performing 

models from each of our three model building processes. We note here, the backward 

stepwise discriminant analysis provided a list of statistically significant variables to 

evaluate. However, due to a limitation with the multivariate classification rule we cannot 

evaluate the proposed model.  

In our 12-month model, the backward stepwise discriminant analysis found a list 

of statistically significant variables that provide good separation, but our classification 

rule proved unsuitable for evaluating these variables. We trace this problem to the 

covariance matrices for each of the two classes and the evaluation of Equation 14. In 

Equation 14, we evaluate the equation    
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produced a positive determinant of the covariance matrix for the nominal risk class and a 

negative determinant for the covariance matrix of the high-risk class. In evaluating for  , 

we attempt to find the natural log of a negative quotient, which results in an error. This 

means, potentially, we failed to evaluate a highly effective model. However, we argue 

our modified RGSS model building process proved its ability to search out potential 

models and return the highest performing models thus reducing the impact of this 

potential limitation. In our recommendations for future research, we provide other 

methods to overcome this limitation. 

As shown in Figure 33, we see a sharp increase in our ability to identify correctly 

a program at risk of a 12-month cumulative change in the EAC of greater than 5%. 

Again, we see the Modified RGSS1 provides the best-performing model, showing a 60% 

reduction in APER when directly compared with the All High-Risk classification rule.   

 
Figure 33. Potential Multivariate Classification Model Comparison 

 

In each of our model building methods, we evaluate the contribution a potential 

variable provides to discriminating between the two classes, high-risk and nominal risk. 

We see in Table 17, several variables present themselves in all of the models considered. 

Forward 
Stepwise1 

Forward 
Stepwise2 

Modified 
RGSS1 

Modified 
RGSS2 

All High-Risk 

APER 0.2282 0.2358 0.1884 0.1960 0.4809 

Precision 0.8348 0.8024 0.9204 0.8968   

Recall 0.7527 0.7577 0.7647 0.7657 0.5191 

F measure 0.8170 0.7930 0.8844 0.8671   
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Unlike previous models considered in our prior definitions of high-risk programs, we see 

our best performing model consists of a large proportion of indicator variables for 

program type. 

Table 17. Multivariate Classification Model Output 

 

After selecting Modified RGSS1 as the best performing model, we look to our 

validation methods to evaluate the expected performance of our selected model against 

new data. From Figure 34, we see extremely high levels of Precision and Recall relative 

to the measures seen in prior sections of this chapter. Additionally, we see a strong trend 

Forward Stepwise1 Forward Stepwise2 Modified RGSS1 Modified RGSS2

Generation
22 22

Iterations 10 8 437 435

P-Value to Enter
0.003948007 0.000420858 0.02518918 0.012084581

P-Value to Remove 0.000561033 0.00028256 0.010099399 0.020989368

APER 0.228177642 0.235834609 0.188361409 0.196018377

Precision 0.83480826 0.802359882 0.920353982 0.896755162

Recall 0.752659574 0.757660167 0.764705882 0.765743073

F measure 0.816974596 0.793002915 0.884353741 0.867084997

Variable Count 8 8 15 15

Variables SPI CV% % Complete CPI

CV%

% Difference 

Between ML and W CPI

% Difference 

Between ML and W

% Difference 

Between ML and W

% Difference 

Between W and B

% Difference 

Between ML and W

% Difference 

Between W and B

% Difference 

Between W and B StDev SPI 

% Difference 

Between W and B TCPI StDev

TCPI StDev TCPI StDev TCPI StDev SCI StDev

Comm. Comm. SCI StDev CV% StDev

Radar Radar CV% StDev SPI 1 Month Change

Small Small AF AF

Comm. Comm.

Helicopter Helicopter

Ship Ship

Plane Plane

Radar Radar

Satellite Satellite

Small Small
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towards consistency of the performance measures when we compare the performance of 

the model on the validation sets and training set. 

 
Figure 34. Multivariate Classification Validation Performance 

 

Multinomial Naïve Bayes Classifier Results 

Each month, via the CPR, contractors provide the DOD Format 5 data, which 

provides detailed descriptions of variances in cost and schedule as the program 

progresses. In this section, we present our results from using these Format 5s to identify 

programs at risk of experiencing a cumulative 12-month increase in EAC of greater than 

5%. As seen from the previous multinomial Naïve Bayes classifier sections, add-  

smoothing, but more specifically, MI thresholds tend to produce a strong influence on the 

model performance. We show in Figures 35, 36, and 37 the impact of add-  smoothing 

and MI thresholds influence this model’s performance as well. Figure 35, shows a muted 

influence on the average error rate as we decrease the  -level. In previous sections, we 

Modified RGSS1 
(Withhold Validation) 

Modified RGSS1 (LOOCV) All High-Risk 

APER 0.2331 0.2169 0.4841 

Precision 0.9146 0.9169   
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saw the average error rate decrease by more than 1% from the highest  -level to lowest; 

however, here we see the error rate falls less than 1% and quickly levels off. 

 
Figure 35. Average Error Rate vs. Add-  Smoothing level for Naïve Bayes text classification, 12-

month cumulative change in EAC greater than 5% (The x-axis shown as qualitative scaling 

evaluated at    
 

 

   
 ,         

 

When considering the MI thresholds impact on average error rate, we saw in 

Figures 14 and Figure 27 a decreasing downward trend for the average error rate as the 

MI threshold increased. However, using our current definition for high-risk programs, we 

see in Figure 37 a nearly parabolic shaped error rate. This seems to imply a greater 

sensitivity to the number of words included in our model vocabulary. We see in Figure 

38, the number of words included meeting our MI threshold quickly decreases as the MI 

threshold increases. As the number of words decreases, Figure 37 implies the model 

vocabulary overfits the data.  

As we previously discussed in Chapter III, overfitting occurs from “an incorrect 

generalization from an accidental property of the training set” (Manning, Raghavan, & 
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Schutze, 2008:251). In this case, we suggest one possible cause of the overfitting may 

result from dependencies between successive Format 5s from individual programs and 

poor generalization. In Figure 36, 12 monthly observations for a hypothetical program. In 

this simplistic example, we find the MI value relatively high due to the disproportionate 

number of observations in the high-risk class compared with the nominal risk class. In 

this example, the conditional probabilities equal and the prior probabilities of the classes 

dictate the classification decision. A lower MI threshold may provide more predictive 

words to the Naïve Bayes classifier. In the 6-month models, the shorter time period 

analyzed may reduce this effect. We relate this to Figure 37 by highlighting lower values 

for MI thresholds resulted in higher performing models.  

 
Figure 36. Hypothetical program to illustrate potential cause of higher misclassification rates 

associated with higher Mutual Information thresholds in 12-month model building 

 

 
Figure 37. Average Error Rate vs. MI Threshold for Naïve Bayes text classification, 12-month 

cumulative change in EAC greater than 5% 
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Figure 38. Model Vocabulary vs. MI Threshold represents decreasing word count as MI increases 

 

From a list of 88 potential models evaluated at each level of MI threshold and   

we have selected the top five performing models for display. As seen in Figure 39, the 

top five models showed equal performance across all performance measures and we 

selected the model with the lowest   level (see Table 18); this resulted in our selection of 

Model 7 for validation.  

Table 18. 12-month Naive Bayes Top 5 performing models  -level  

  Alpha Value 

Model 3 0.015625 

Model 4 0.00390625 

Model 5 0.000976563 

Model 6 0.000244141 

Model 7 6.10352E-05 

 
Figure 39. Multinomial Naïve Bayes Text Classifier Model Comparison 
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F Measure 0.8504 0.8504 0.8504 0.8504 0.8504 

0.81 

0.82 

0.83 

0.84 

0.85 

0.86 



 

 

97 

 

As we validate our model, we seek to understand the impact of unseen data on the 

performance of the model. By evaluating our model using the multi-stage validation 

method we simulate the expected learning behavior of our model as new data becomes 

available. As seen in Figure 40, contrary to our previous multinomial Naïve Bayes 

classifiers, the number of words in the model vocabulary increases. This seems to imply 

that as data becomes available we find a greater concentration of words by class. This 

concentration provides an improved ability to differentiate between the high-risk 

programs and nominal risk programs. We find this supported by Figure 41, where we find 

the difference in Precision performance negligible between the Full Validation set and 

LOOCV, but we see a nearly 10% improvement in Recall.  

 
Figure 40. Vocabulary Learning 

 

 
Figure 41. Multi-Stage Validation 
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Hybrid Multivariate and Naïve Bayes Text Classification Model 

In each of the prior high-risk definitions, we see the hybrid multivariate and Naïve 

Bayes classifier performs exceptionally well. As expected, the hybrid classification 

model showed strong performance and tight groupings of performance measures in each 

of our prior definitions of high-risk programs. We see in Figure 42, our current definition 

provides no exception from this trend. We draw the reader’s attention to the performance 

difference between the All High-Risk classification rule and our best performing model 

measured by APER, the Modified RGSS1. We see a 53% improvement in Recall and a 

62% reduction in the APER. In Table 19, we provide the variable composition for each 

model displayed in Figure 42. We see the variables CV%, SCI, SPI, and % Difference 

Between ML and W, as well as a handful of categorical variables repeat across models. 

This implies these variables provide good discriminatory power between the high-risk 

and nominal risk classes.    

 
Figure 42. Hybrid Classifier Model Comparison 
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RGSS2 
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APER 0.1930 0.2021 0.2144 0.1822 0.1868 0.4809 
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Table 19. Hybrid Classifier Model Output 

 

From these models, we selected Modified RGSS1 as our top performing model 

following our multivariate model selection criteria of lowest APER. Next, we evaluated 

the withheld validation data by applying our Modified RGSS1. We provide the resulting 

observations in Figure 43 along with the results of applying the LOOCV method. From 

Figure 42 and Figure 43, we see a trend towards consistency in the performance of our 

model. This suggests that as additional data becomes available we expect the long-term 

performance of the model to remain stable. To reiterate, we seek lower values of APER 

and higher values for all other performance measures. 

Forward 

Stepwise1

Forward 

Stepwise2

Backward 

Stepwise1

Modified 

RGSS1

Modified 

RGSS2

Generation 2 18

Iterations 11 9 24 42 359

P-Value to Enter 0.020969915 0.014565773 0.042153999 0.029916791 0.036391816

P-Value to Remove0.004082307 0.005933797 0.013215214 0.024260356 0.006332704

APER 0.19295559 0.202143951 0.2143951 0.182235835 0.186830015

Precision 0.887905605 0.884955752 0.743362832 0.867256637 0.83480826

Recall 0.77377892 0.763358779 0.826229508 0.798913043 0.810888252

F measure 0.862464183 0.857632933 0.758579169 0.852668213 0.829912023

Variable Count 11 9 17 11 11

Variables SPI SPI TCPI SPI SCI

CV% CV% SCI SCI CV%

% Difference 

Between ML 

% Difference 

Between ML CV%

% Difference 

Between ML 

% Difference 

Between ML 

% Difference 

Between ML TCPI StDev
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Change
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Change
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Comm. Radar TCPI StDev Comm. Comm.

Plane Small CV% StDev Plane Plane

Radar NB_Pred_Class TCPI 1 Month Radar Radar

Small CPI 2 Month Small Small
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Figure 43. Hybrid Classification Validation Results 

 

Section Summary 

In our analysis of extending the effective timeframe of our model from 6-months 

to 12-months, we find the multivariate classifier outperforms both the hybrid classifier 

and multinomial Naïve Bayes classifier. We conclude this section by providing a 

comparison across analysis methods using the LOOCV models from each method. As 

seen in Figure 44, the Hybrid Classifier marginally outperforms the Naïve Bayes 

classifier when we measure by accuracy, but provides a slight performance edge in 

Recall. While the multivariate classifier performs exceptionally when measured by 

Precision, we find a 6% decline in Recall relative to the hybrid classifier. 

During our analysis, we found the performance of the multivariate analysis 

potentially fit the data too well. To allay these concerns, we queried DCARC for data 

beyond that considered in our original database. We collected data on the Global Hawk 

program, a program not considered in our dataset, and applied the multivariate model to 

the data. We found similar results to that found in our dataset, we observed a Recall 
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All High-Risk 
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measure of 88% and an overall accuracy of 89%. These new observations equated to less 

than 1% of our original dataset. Our model’s performance on the Global Hawk data 

provided reassurances the model’s performance did not result from an anomaly or 

overfitting the data.   

 
Figure 44. Validated Model Comparison Across Analysis Methods 

Summary 

In this chapter, we presented our results beginning with our initial definition of 

high-risk programs, or those programs at risk of a 6-month cumulative change in EAC 

greater than 5% in magnitude. We then presented the results of our second high-risk 

program definition, or those programs at risk of a 6-month cumulative increase in EAC of 

greater than 5%. Finally, we presented the results for extending the effective detection 

window from a 6-month cumulative change in EAC greater than 5% to a 12-month 

cumulative change in EAC of greater than 5%.  

In each definition of high-risk, we provided three methods for detecting high-risk 

programs: a multivariate classification method, a multinomial Naïve Bayes text classifier, 

Multivariate 
Classifier 
(LOOCV) 

Naïve Bayes 
Classifier 
(LOOCV) 

Hybrid Classifier 
(LOOCV) 

All High-Risk  

Accuracy 0.7831 0.7831 0.7855 0.5110 

Precision 0.9169 0.8432 0.8082   

Recall 0.7311 0.7618 0.7801 0.5110 

F-measure 0.8725 0.8256 0.8024   
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and a hybrid model joining both the multivariate and multinomial Naïve Bayes 

classifiers. In Figure 45, we provide the highest scoring models measured by F measure 

for each definition of a high-risk program. Definition 1 reflects the programs classified as 

high-risk if we see a 6-month cumulative EAC change greater than 5% in magnitude. 

Definition 2 corresponds to a 6-month cumulative increase in EAC of greater than 5%. 

Definition 3 represents the 12-month cumulative increase in the EAC of greater than 5%. 

In Figure 46, we provide conditional probability matrices for each of these definitions.  

From the results of our analysis using Definition 2 and Definition 3, we observe a 

significant improvement by extending the time horizon. We believe one possible cause of 

this phenomenon arises from the length of time a new EAC takes to gain approval for 

reporting. Another possible cause relates to the existence of short-term reluctance that 

prevents rapid increases to the EAC, this may influence the short-term accuracy but have 

less of an effect on the long-term outcomes.  

For the specific formulations of these models, we direct the readers to Appendix I, 

Appendix J, and Appendix K for the selected model in each definition respectively. In the 

next chapter, we discuss our findings further and relate them back to our original research 

questions. We also provide suggestions for improvement and direction for future 

research. 
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Figure 45. Selected Model for Each Definition of High-Risk 

 

 
Figure 46. Conditional Probability Matrices for best performing models in each definition of high-

risk 
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Multivariate Classifier 

(LOOCV) 

Definition 1 Definition 2 Definition 3 

Accuracy 0.7621 0.7968 0.7831 
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V.  Conclusions and Recommendations 

Chapter Overview 

In this chapter, we discuss the conclusions we draw from the results of our 

research effort and the implications this work may provide to the DOD’s EVM and 

program management community. We also convey possible directions for further 

research and improvements to our methods. Finally, we state the significance of our 

study’s findings to the EVM community, especially Cost Analysts and Program 

Managers. 

Conclusions of Research 

In Chapter I, we began our research by asking three questions: 

1. Does adopting either a multivariate classification, multinomial Naïve Bayes text 

classifier, or a hybrid of the two methods, improve on prior methods used to 

identify programs at risk of a 6-month change in the EAC (either cost or under 

cost)? 

2. If so, do these new methods allow us to identify programs at risk of cost growth 

greater than 5% 6-months out? 12-months out? 

3. If we answer questions one and two affirmatively, can we incorporate these 

methods into tools available to the DOD program management community? 

We begin our discussion by reflecting on question one. In Chapter IV, Figure 21 

clearly shows the Naïve Bayes classifier and hybrid model outperforms all prior research 
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proxy models. We selected the Naïve Bayes classifier as the highest performing model in 

our evaluation of programs in the high-risk class defined by Definition 1 from Chapter 

IV. Our initial evaluation of the hybrid model in the training set showed promise but 

upon evaluation using LOOCV, we found the performance perfectly matched that of the 

Naïve Bayes classifier.  

Digging in to the details of the hybrid classification method, we find in addition to 

NB_Pred_Class variable, only two variables from the Format 1 data that showed the 

required significance to gain entrance to the model (the NB_Pred_Class represents the 

predicted class provided by the Naïve Bayes classifier model). This seems to imply the 

Format 1 data does not contribute a significant amount of information over that already 

contributed by the variable NB_Pred_Class. The variable NB_Pred_Class dilutes any 

discriminating power provided by the Format 1 data as additional data enters the model 

and strengthens the discriminating power of the NB_Pred_Class variable. Given the 

convergence of models to identical performance measures, we select the most 

parsimonious model as best. In this case, we selected the Multinomial Naïve Bayes 

Classifier for identifying high-risk programs in our first research question. 

Next, we consider our second research question. We see in Figure 45 of Chapter 

IV, two different models selected as best for each timeframe. First, we discuss the impact 

of changing the definition of high-risk programs from identifying the magnitude change 

to simply the cumulative change in EAC greater than 5%. We see Figure 45 displays the 

Hybrid Classifier as the best performing model when identifying high-risk programs 

using the new definition. The hybrid model consisted of two variables from the Format 1 
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data, we found TSPI and CV% highly discriminatory in addition to NB_Pred_Class. 

Interestingly, the two variables from Format 1 data focus on both schedule and cost 

aspects of performance respectively, not just cost.  

Our second consideration in question two provides useful insight to the timeframe 

data remains effective. We see by extending our identification timeframe from 6-months 

to 12-months that we now select the multivariate classifier as the best performing model. 

We see in Chapter IV, Figure 45 shows the Multivariate classifier identifies 92% of the 

available high-risk programs in our dataset while providing a 73% chance of correctly 

identifying a program as high-risk. While we see a 4% decrease in Recall when compared 

to the Naïve Bayes classifier, we more than compensate for this loss by a nearly 9% 

increase in Precision. This suggests that over extended periods, the Format 1 data 

provides more useful information used to separate high-risk programs from nominal risk 

programs at a minimal cost of false detections. However, this does not suggest the Format 

5 data provides no useful information, only that the multivariate classifier performed the 

best out of our alternatives. 

Overall, our analysis using the cumulative change in EAC greater than 5% for the 

6-month timeframe and 12-month timeframes, suggest that Format 5 data contributes 

more meaningfully to short term risk detection while the Format 1 data provides more 

significance over longer term risk detection. 

Finally, we discuss our findings in relation to our third research question. Each of 

our analysis methods collected data currently available to DOD program management 

community. We purposefully avoided the use of commercial statistical software packages 
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requiring licensing. Instead, we completed this analysis using Microsoft Excel
®
 and the 

free statistical software R (The R Foundation for Statistical Computing, 2011). We 

believe this methodology can provide significant advantage to the DOD program 

management community and ease of implementation. 

Recommendations for Future Research 

During the course of our research, we identified three promising avenues for 

further research. First, we discuss the potential use of the Naïve Bayes classifier to 

identify potential root causes of increased risk. Secondly, we discuss enhancements to our 

methodology that may provide additional insight to the identification of high-risk 

programs. Finally, we discuss methods to predict the specific cumulative EAC change 

expected for programs considered high-risk. 

We believe the possibility exists, where we can apply the Naïve Bayes classifier 

to Selected Acquisition Reports (SARs) and map the cost variance descriptions to the 

CPR Format 5s. The SARs provide annual status updates for DOD MDAPs and contains 

eight cost variance categories (Department of Defense, 2011). We provide these eight 

categories in Table 20. If we treat each category as a class, we believe it is possible to 

train the Naïve Bayes classifier for key terms in each class and apply this model to the 

Format 5 data provided each month. By doing so, we provide some insight to possible 

root causes of risk within the program and provide Program Managers a more defined 

risk profile. 
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Table 20. SAR Cost Variance Categories (Department of Defense, 2011:19) 

Economic Schedule Other 

Quantity Engineering Support 

Schedule Estimating  

 

Our second recommendation for further research improves upon the methodology 

we set out in our analysis. In Chapter IV, pages 90 and 91, we mentioned the limitation 

associated with using our classification rule. One possible method to overcome the 

aforementioned limitation, we derive from the multivariate classification rule used by 

JMP
®
. This method uses the Mahalanobis distance and evaluates an observation’s 

distance from the multivariate mean of each class (SAS Institute Inc, 2013b). The 

decision rule then chooses the class that minimizes this distance. During our evaluation of 

the multivariate classification method, we cross checked our analysis with that in JMP
®
 

and found the outputs in most cases identical. The exception relates to the limitation of 

the use of our probability density function. The Mahalanobis distance does not 

experience the same limitation and provides the additional advantage of providing a 

probability an observation belongs to the specific class predicted (SAS Institute Inc., 

2013c).  

In our multivariate classification, our classification rule treats the predicted class 

as certainty. We do not consider the probability of the observation belonging to a specific 

class during classification. By using the Mahalanobis distance, future research may 

provide higher Recall and Precision by setting detection thresholds on the probabilities 

provided for each observation. For example, in our multivariate analysis we may predict 

a nominal risk observation belongs to the high-risk class. However, the Mahalanobis 
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distance method may provide a probability the observation belongs to the high-risk class 

of 0.51. The research can set a threshold for the probability of greater than 0.55 before 

the detection method identifies a program as high-risk thus influencing the probabilities 

of false detections. 

Our final recommendation involves a better method for predicting the actual 

change in the EAC using Ordinary Least Squares (OLS) Regression. White et al. (2004) 

used a two-step regression procedure to predict the amount of cost growth (as measured 

by Selected Acquisition Reports) an acquisition program would incur. Similarly, we 

suggest differentiating programs that express nominal risk profiles from those that 

express high-risk profiles using our methodology, then use multiple regression to predict 

the amount of cost growth expected from the high-risk population. This would further 

enhance our model’s ability to provide useful input to the LCRM matrix discussed in our 

significance of research section and improve decision support. 

Significance of Research 

This research effort significantly contributes to the current body of knowledge on 

DOD acquisition risk detection and provides useful application for DOD program 

management. We previously showed the significant improvement in our ability to 

identify correctly, programs at risk of changes in EAC and the probabilities associated 

with these methods compared with prior research. We now discuss the additional 

significance of this effort. 



 

 

110 

 

  We find this research effort not only provides an overall program risk 

identification but we can change the specific labels applied to the observations and 

change the learning objective. This becomes useful if we consider this in the context of 

risk reporting to program management. Air Force Pamphlet 63-128 provides guidance on 

assessing life cycle risk management (LCRM) (Department of the Air Force, 2009:107-

109). This guidance provides specific direction on the development on commonly used 

LCRM Risk Matrices. Figure 47 provides a visual representation of this LCRM Risk 

Matrix. 

 
Figure 47. LCRM Risk Matrix (Department of the Air Force, 2009:107) 

Additionally, we provide Table 21 and Table 22, which respectively provides the 

likelihood criteria and the cost consequence criteria used to determine visually risk of the 

program. 

Table 21. Likelihood Criteria (Department of the Air Force, 2009:107) 

Level Likelihood Probability of Occurrence 

5 Near Certainty 81%-99% 

4 Highly Likely 61%-80% 

3 Likely 41%-60% 

2 Low Likelihood 21%-40% 

1 Not Likely 5%-20% 
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Table 22. Standard AF Consequence Criteria – Cost (Department of the Air Force, 2009:109) 

LEVEL  Standard AF Consequence Criteria – Cost (A-B refers to MS)  

1  For A-B Programs: 5% or less increase from MS A approved cost estimate For 

Post-B & Other Programs: limited to <=1% increase in Program Acquisition 

Unit Cost (PAUC) or Average Procurement Unit Cost (APUC) from current 

baseline estimate, or last approved program cost estimate  

2  For A-B Programs: > 5% to 10% increase from MS A approved estimate For 

Post-B & Other Programs: <=1% increase in PAUC/APUC from current 

baseline estimate, or last approved program cost estimate, with potential for 

further cost increase  

3  For A-B Programs: >10% to 15% increase from MS A approved estimate For 

Post-B & Other Programs: >1% but <5% increase in PAUC/APUC from current 

baseline estimate, or last approved program cost estimate  

4  For A-B Programs: >15% to 20% increase from MS A approved estimate For 

Post-B & Other Programs: 5% but <10% increase in PAUC/APUC from current 

baseline estimate, or last approved program cost estimate  

5  For A-B Programs: >20% increase from MS A approved cost estimate For Post-

B & Other Programs: >=10% increase in PAUC/APUC from current baseline 

estimate (danger zone for significant cost growth and Nunn-McCurdy breach), 

or last approved program cost estimate  

 

In the context of Table 21, our model currently provides the program analyst a 

level 4 output. In other words, if we identify the program as high-risk we see the 

probability falls within the definition of the highly likely category. Additionally, our 

model produces expected cost growth of the program overall (greater than 5%). We see 

this does not specifically match the criteria set out in Table 22, as these thresholds 

consider the PAUC/APUC. However, by changing our learning objective to higher cost 

growth the analysts can quickly determine the minimum expected cost growth for 

PAUC/APUC by dividing the new expected minimum EAC by the number of units in 

acquisition.  

To clarify further we provide the following example. Consider a post-milestone B 

program acquiring a single unit of some product with an EAC of $100. We run our 6-
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month analysis on the CPR provided by the contractor and find the program identified as 

high-risk. At a minimum, this implies we expect the program EAC to rise to $105 in 6-

months. Accordingly, we look to report this development to program management using 

the LCRM risk matrix. We find our identification methods provide a level 4 probability 

of occurrence and we expect our APUC to increase by a minimum of 5%. We plot the 

risk profile for this program in coordinates (4,4),  as seen in Figure 48. 

 
Figure 48. Example LCRM Risk Matrix Analysis 

 

The flexibility of our learning methods allows us to define our learning objectives 

to match the criteria laid out in Table 22. This provides a probability of occurrence for 

each consequence level. In our recommendations for future research, we provided the 

potential for additional methods more appropriate for this type of analysis. 

We conclude this research effort by providing details on opportunities for 

immediate implementation and integration into applications currently in use by the DOD 

acquisition community. We discuss three different opportunities. First, we discuss the 

CPR File Viewer. Next, we discuss the EVM-CR Dashboard. Finally, we discuss 

implementation in the EVM_Analyst role in DCARC. 

X 
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We provide two alternatives for implementation of our model into the CPR File 

Viewer. In Chapter III, on page 31, we provided a passing comment on the fact that 

DCARC recently provided a CPR file viewer to overcome limitations associated with 

data collection in this and previous research. We see the CPR file viewer currently 

provides the option to highlight changes in CPI and SPI based on surpassing some user-

defined threshold (Defense Cost and Reporting Center, 2013:9). We provide Figure 49 to 

illustrate this further. 

 
Figure 49. CPR File Viewer Risk Indicator (Defense Cost and Resource Center, 2013a:9) 

 

We see these indicators as an interest in identifying increased risk to program cost 

performance. This interest presents an opportunity to integrate our model into an 

application currently in use and provide enhanced capabilities in program risk detection.  

The first alternative we discuss consists of integrating our model directly into the CPR 

File Viewer. Specifically, we suggest the model output alert users of the risk level of the 

program in (F1) Header tab of the Browse File tab (see Figure 50). 
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Figure 50. Recommended integration of the 12-month multivariate classification model to the EVM 

File Viewer 

Our second alternative for the CPR File Viewer requires the addition of a Risk 

Summary tab. This tab would consist of the LCRM risk matrix from Figure 48. We also 

recommend including a modified version of Tables 21 and 22 specific to the probability 

and impact defined by DCARC. The user could then reference these tables for specific 

information about the LCRM risk matrix output. 

The next recommendation we make, stems from our review of the DCARC EVM-

CR dashboard, shown in Figure 51. We see the EVM-CR Dashboard implies the CPI and 

SPI provide sufficient information to gain perspective on the overall health of the DOD 

program portfolio. Based on an ad hoc analysis using our multivariate classification 

analysis for the 12-month increase in EAC of greater than 5%, we find the CPI and SPI 

indicate very little in identifying risk of potential cost growth given a specific timeframe. 

In contrast, our model provides a 30% improvement in overall accuracy in differentiating 

Identified as High-risk Program, 70% chance of cost 

growth in excess of 5% in 12 months. 

We recommend something to 

this effect 
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between high-risk and nominal risk programs. We present the results of our ad hoc 

analysis in Figure 52 and provide results from our 12-month model in Figure 53 for 

comparison. We recommend adding an additional screen to the EVM-CR dashboard, 

which implements our model and identifies programs as high-risk or nominal risk. This 

provides more clarity and urgency to risks that CPI and SPI alone may not identify. 

Conveniently, the office responsible for these applications also maintains the 

source data for our model. By providing analysts with the output from our model without 

the effort of conducting the analysis, we reduce the aversion to adopting new 

methodologies and ensure consistency of its application by maintaining the model in a 

single location. 

 

 
Figure 51. Screenshot of EVM-CR Dashboard showing CPI and SPI indicators (Defense Cost and 

Resource Center, 2013b) 
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Figure 52. Ad hoc 12-month risk identification using only SPI and CPI for input 

 
Figure 53. Multivariate Classifier (LOOCV) model seeking to identify programs at risk of 12-month 

cost growth greater than 5% 

 

Our third and final recommendation applies directly to the EVM_Analyst role 

within DCARC. We see by selecting a program, the analyst can review program specific 

detail including a status assessment. Figure 54 illustrates this tool. We recommend the 

addition of a risk metric as shown in Figure 55. By providing the risk information on the 

program detail screen, we give analyst an advantage when synthesizing critical 

information concerning the overall health of the program.  

 

High-risk

Nominal 

Risk High-risk

Nominal 

Risk High-risk

Nominal 

Risk

High-risk 0.6579 0.4929 High-risk 0.5755 0.3155 High-risk 0.6004 0.4023

Nominal 

Risk 0.3421 0.5071

Nominal 

Risk 0.4245 0.6845

Nominal 

Risk 0.3996 0.5977

17.81% 85.99% 66.75%

52.82% 60.05% 59.93%

SPI Only CPI Only CPI and SPI

% of problem detect

% Accurate

% of problem detect

% Accurate

% of problem detect

% Accurate

Predicted Class

Actual Class

Predicted Class

Actual Class

Predicted Class

Actual Class
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Figure 54. Screenshot from DCARC EVM_Analyst role program detail of CH-53K  

 

 

Figure 55. Recommended change to the Program Detail screen within the EVM_Analyst role in 

DCARC 

This research effort reflects a culmination of three years of research seeking 

solutions to the problem of identifying programs with elevated levels of cost risk. Keaton 

et al. (2011) began by asking the question can the CPI and SPI provide the necessary 

information required to determine automate the detection of cost risk. They found the 

process showed potential for automation but their model proved too sensitive for 

implementation and resulted in too many false detections. Dowling (2012) adopted a 

more robust optimization technique to improve insight into the timeframe and probability 

of the occurrence of a cost risk. Miller (2012) asked does the Format 5 data provide any 

useful information in identifying programs with cost risks. In the same year, Dowling et 

Risk Status  High-Risk  

We recommend something to 

this effect 
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al. (2012) developed a unified model, bridging the gap between the analysis of Format 1 

data and Format 5 data.  

Yet despite Dowling (2012), Miller (2012), and Dowling et al. (2012) attempts, 

none of these provided an actionable decision support tool for the acquisition community. 

This research does that and more. The current research effort acts as the capstone, 

concentrating the knowledge collected from these previous efforts, improving upon these 

results, and providing an actionable decision support tool for the DOD acquisition 

community. We find this research directly supports the goals of “more disciplined use of 

resources” and “improving efficiency” laid out in the OUSD(Comptroller) FY2013 

Defense Budget (Department of Defense, 2012a:3.1). Our research and methodology 

greatly aids in detecting high-risk programs in these cost-conscious times keeping 

program managers focused on the risk management horizon.  
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Appendix A: Variable List for Additional Data Calculations (Dowling, 2012) 

Variable 
Name 

Equation Interpretation 

6 Mo Delta 
       

       

  
 ; 

where    is the EAC-ML for the  th month 

Shows the 6 month change in 

EAC Most Likely 

% Complete            
       

   
      

Compares work accomplished 

to total work planned 

Cost 

Performance 

Index (CPI) 
    

    

    
 

Compares the budgeted cost for 

work completed against the 

actual cost of work completed 

Schedule 

Performance 

Index (SPI) 
    

    

    
 

Compares the budgeted cost for 

work performed against the 

budget cost of work scheduled 

Total 

Schedule 

Performance 

Index 

(TSPI) 

     
        

        
 

Ratio of the budgeted 

performance to schedule 

performance 

Total Cost 

Performance 

Index 

(TCPI) 

     
        

        
 

Ratio of budgeted performance 

to actual performance 

Schedule 

Cost Index 

(SCI) 
            

Cost ratio multiplied by 

schedule ratio 

Schedule 

Variance 

(SV%) 
    

         

    
     

Shows ahead and behind 

schedule 

Cost 

Variance 

(CV%) 
    

         

    
     Shows over and under budget 

% 

Difference 

Between W 

and ML 

          
          

     
 

The % difference between the 

contractor’s worst case EAC 

estimate and the most likely 

EAC 

% 

Difference 

Between 

ML and B 

          
          

     
 

The % difference between the 

contractor’s most likely EAC 

estimate and the best case EAC 

% 

Difference 

Between W 

and B 

         
          

    
 

The % difference between the 

contractor’s worst case EAC 

estimate and the best case EAC 

 



 

 

120 

 

Variable 
Name 

Equation Interpretation 

Standard 

Deviation 

CPI (StDev 

CPI) 

                                   ) 
Measure of variability of 

the last three CPIs 

Standard 

Deviation 

SPI (StDev 

SPI) 

                                   ) 
Measure of variability of 

the last three SPIs 

Standard 

Deviation 

TSPI (TSPI 

StDev) 

                                   ) 
Measure of variability of 

the last three TSPIs 

SCI 

Standard 

Deviation 

(SCI StDev) 

                                   ) 
Measure of variability of 

the last three SCIs 

Standard 

Deviation 

TCPI (TCPI 

StDev) 

                                       ) 
Measure of variability of 

the last three TCPIs 

 SV% 

Standard 

Deviation 

(SV% 

StDev) 

                                     
Measure of variability of 

the last three SV%s 

CV% 

Standard 

Deviation 

(CV% 

StDev) 

                                     
Measure of variability of 

the last three CV%s 

CPI 1 

Month 

Change 
           

           

      
 

Measure of the change 

from CPI of one month to 

the next month 

SPI 1 

Month 

Change 

           
           

      
 

Measure of the change 

from SPI of one month to 

the next month 

TSPI 1 

Month 

Change 
            

             

       
 

Measure of the change 

from TSPI of one month to 

the next month 

TCPI 1 

Month 

Change 
            

             

       
 

Measure of the change 

from TCPI of one month 

to the next month 
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Variable 
Name 

Equation Interpretation 

SCI 1 

Month 

Change 
           

           

      
 

Measure of the change 

from SCI of one month to 

the next month 

SV% 1 

Month 

Change 
           

           

      
 

Measure of the change 

from SV% of one month 

to the next month 

CV% 1 

Month 

Change 

           
           

      
 

Measure of the change 

from CV% of one month 

to the next month 

CPI 2 

Month 

Change 
           

           

      
 

Measure 2 month percent 

change in CPI 

SPI 2 

Month 

Change 
           

           

      
 

Measure 2 month percent 

change in SPI 

TSPI 2 

Month 

Change 
            

             

       
 

Measure 2 month percent 

change in TSPI 

TCPI 2 

Month 

Change 
            

             

       
 

Measure 2 month percent 

change in TCPI 

SCI 2 

Month 

Change 

           
           

      
 

Measure 2 month percent 

change in SCI 

SV% 2 

Month 

Change 
           

           

      
 

Measure 2 month percent 

change in SV% 

CV% 2 

Month 

Change 
           

           

      
 

Measure 2 month percent 

change in CV% 

 

  



 

 

122 

 

Appendix B: Perfect Correlation SPI and SV% Decomposition 

The calculation for SPI follows this form: 

    
    

    
 

Next, we deconstruct the SV%, ignoring the multiplication of 100 as a constant, to find 

the SV% as follows: 

    
  

    
 

         

    
 

    

    
 

    

    
 

    

    
          

Through this decomposition, we have shown SV% will always have a perfectly 

correlated relationship with SPI. 
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Appendix C: Variable List 

Calculated Variables (See Appendix A for calculation details) 

% Complete 

CPI 

SPI 

TSPI 

TCPI 

SCI 

CV% 

% Difference Between ML and W 

% Difference Between ML and B 

% Difference Between W and B 

StDev CPI 

StDev SPI 

TSPI StDev 

TCPI StDev 

SCI StDev 

CV% StDev 

CPI 1 Month Change 

SPI 1 Month Change 

TSPI 1 Month Change 

TCPI 1 Month Change 

SCI 1 Month Change 

CV% 1 Month Change 

CPI 2 Month Change 

SPI 2 Month Change 

TSPI 2 Month Change 

TCPI 2 Month Change 

SCI 2 Month Change 

CV% 2 Month Change 

Service 

AF 

Army 

Joint 

Navy 

Marine 

Platform 

Comm. 

Facility 

Helicopter 

Missile 

Plane 

Radar 

Satellite 

Ship 

Contract Size 

Small 

Other 
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Appendix D: R Code TXT to CSV File 

# http://jeffreybreen.wordpress.com/2011/07/04/twitter-text-mining-r-slides/ 

 

setwd("C:/txt file location") 

sample = scan("1.txt", what=" ") 

       # clean up samples with R's regex-driven global substitute, gsub(): 

        sample = gsub('[[:punct:]]', '', sample) 

        sample = gsub('[[:cntrl:]]', '', sample) 

        sample = gsub('\\d+', '', sample) 

        # and convert to lower case: 

        sample = tolower(sample) 

sample1 <- as.data.frame(table(sample)) 

sample = scan("2.txt", what=" ") 

       # clean up samples with R's regex-driven global substitute, gsub(): 

        sample = gsub('[[:punct:]]', '', sample) 

        sample = gsub('[[:cntrl:]]', '', sample) 

        sample = gsub('\\d+', '', sample) 

        # and convert to lower case: 

        sample = tolower(sample) 

sample2 <- as.data.frame(table(sample)) 

sample = scan("3.txt", what=" ") 

       # clean up samples with R's regex-driven global substitute, gsub(): 

        sample = gsub('[[:punct:]]', '', sample) 

        sample = gsub('[[:cntrl:]]', '', sample) 

        sample = gsub('\\d+', '', sample) 

        # and convert to lower case: 

        sample = tolower(sample) 

sample3 <- as.data.frame(table(sample)) 

sample = scan("4.txt", what=" ") 

       # clean up samples with R's regex-driven global substitute, gsub(): 

        sample = gsub('[[:punct:]]', '', sample) 

        sample = gsub('[[:cntrl:]]', '', sample) 

        sample = gsub('\\d+', '', sample) 

        # and convert to lower case: 

        sample = tolower(sample) 

sample4 <- as.data.frame(table(sample)) 

 

wordcount <- merge(sample1,sample2,by="sample", all = TRUE) 

wordcount <- merge(wordcount,sample3,by="sample", all = TRUE) 

colnames(wordcount) <- c('sample','1','2','3') 

wordcount <- merge(wordcount,sample4,by="sample", all = TRUE) 

colnames(wordcount) <- c('sample','1','2','3','4') 

wordcount[is.na(wordcount)] <- 0 

 

setwd("C:/csv file location") 

write.table(wordcount, file = "AEHF.csv", sep = ",", col.names = NA, qmethod = "double") 
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Appendix E: Excel VBA Code Remove Special Characters 

Sub ReplaceInTextFile() 

For I = 1 To 32 

filelocation = "C:\TXT file location\" & I & ".txt" 

Open filelocation For Input As #1 

c0 = Input(LOF(1), #1) 

Close #1 

 

Open filelocation For Output As #1 

Print #1, Replace(c0, "'", "") 

Close #1 

     

Open filelocation For Input As #1 

c0 = Input(LOF(1), #1) 

Close #1 

 

Open filelocation For Output As #1 

Print #1, Replace(c0, """", "") 

Close #1 

 

Open filelocation For Input As #1 

c0 = Input(LOF(1), #1) 

Close #1 

 

Open filelocation For Output As #1 

Print #1, Replace(c0, " ", " ") 

Close #1 

Next I 

End Sub 
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Appendix F: R Code Merge CSV Files 

#save all program csv files in a common folder 

#when merging csv files delete the first column (just numbers the variables) and change 

the column headings to program_# where # is the observation number 

 

setwd("C:/file location with all csv file to be combined") 

 

multmerge = function(mypath){ 

filenames=list.files(path=mypath, full.names=TRUE) 

datalist = lapply(filenames, function(x){read.csv(file=x,header=T)}) 

Reduce(function(x,y) {merge(x,y, all = TRUE)}, datalist)} 

 

wordcount = multmerge("C:/file location with all csv files to be combined") 

 

wordcount[is.na(wordcount)] <- 0 

write.table(wordcount, file = "wordcount.csv", sep = ",", col.names = NA, qmethod = 

"double") 
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Appendix G: Word VBA Code Extract Misspelled Words 

Sub GetSpellingErrors() 

'http://word.tips.net/T001465_Pulling_Out_Spelling_Errors.html 

'1/10/2013 

'Format 5s are professional documents. This implies that words should be spelled 

‘accurately. If we find words that don't make sense we might be able to blame the 

‘methods used for collecting the data from ‘PDF to txt files. 

    Dim DocThis As Document 

    Dim iErrorCnt As Integer 

    Dim J As Integer 

 

    Set DocThis = ActiveDocument 

    Documents.Add 

 

    iErrorCnt = DocThis.SpellingErrors.Count 

    For J = 1 To iErrorCnt 

        Selection.TypeText Text:=DocThis.SpellingErrors(J) 

        Selection.TypeParagraph 

    Next J 

End Sub 
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Appendix H: Exempted Misspelled Words 

Exempted 
Word Explanation 

Exempted 
Word Explanation 

eac Estimate at Complete timephasing 
hyphens removed (and/or 
common usage) 

sv Schedule Variance rephasing 
hyphens removed (and/or 
common usage) 

vac Variance at Complete supt 
hyphens removed (and/or 
common usage) 

wbs 
Work Breakdown 
Structure rqmts 

hyphens removed (and/or 
common usage) 

cpi Cost Performance Index underrunning 
hyphens removed (and/or 
common usage) 

bcwp 
Budgeted Cost of Work 
Performed timephased 

hyphens removed (and/or 
common usage) 

bcws 
Budgeted cost of Work 
Scheduled rephase 

hyphens removed (and/or 
common usage) 

acwp 
Actual Cost of Work 
Performed rephased 

hyphens removed (and/or 
common usage) 

spi 
Schedule Performance 
Index stopwork 

hyphens removed (and/or 
common usage) 

bac Budget At Complete underruning 
hyphens removed (and/or 
common usage) 

clin 
Contract line item 
number underran 

hyphens removed (and/or 
common usage) 

tcpi 
Total Cost performance 
index workpackage 

hyphens removed (and/or 
common usage) 

var Variance  workpackages 
hyphens removed (and/or 
common usage) 

cpr 
Contractor Performance 
Report taskings 

hyphens removed (and/or 
common usage) 

obs Obligations underbudget 
hyphens removed (and/or 
common usage) 

underrun 
hyphens removed 
(and/or common usage) unscoped 

hyphens removed (and/or 
common usage) 

replan 
hyphens removed 
(and/or common usage) definitization 

hyphens removed (and/or 
common usage) 

pmb 
program management 
baseline definitized 

hyphens removed (and/or 
common usage) 
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Exempted 
Word Explanation 

Exempted 
Word Explanation 

nonlabor 
hyphens removed 
(and/or common usage) replanned 

hyphens removed (and/or 
common usage) 

hrs 
hyphens removed 
(and/or common usage) lre Latest Revised Estimate 

mgmt 
hyphens removed 
(and/or common usage) underruns 

hyphens removed (and/or 
common usage) 

qual 
hyphens removed 
(and/or common usage) replanning 

hyphens removed (and/or 
common usage) 

unpriced 
hyphens removed 
(and/or common usage) 
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Appendix I: Definition 1: Naïve Bayes Classifier (LOOCV) Formulation 

MI Threshold: 0.008 

 - Level: 0.25 

Naïve Bayes Text Classification Rule 

     
      

   
                       

      

  

 

 

 
 

 
 

 

0.315164 0.684836 
 

 
 

  
_Features High-risk 

Nominal 
Risk 

absence 0.000183 0.000191 

absences 5.97E-05 0.000131 

ac 0.001001 0.001402 

acct 3.08E-05 0.000259 

accuracy 0.000132 0.000204 

accurate 0.000849 0.000643 

accurately 0.000219 0.000515 

act 0.005998 0.002462 

ad 0.000168 0.00053 

addressed 0.00266 0.002183 

adjusting 4.53E-05 0.000173 

agreements 9.6E-05 0.000502 

ahead 0.006266 0.009913 

alerts 0.00011 3.26E-06 

alternative 0.000161 0.000426 

amp 5.25E-05 0.003127 

amplifier 0.001501 0.000277 

angular 0.000103 3.26E-06 

anticipate 0.000755 0.001133 

anticipation 0.000118 0.000293 

aperture 0.000487 0.000139 

apogee 8.15E-05 1.11E-05 

applied 0.00208 0.00205 

applying 0.000154 0.000353 

apportioned 0.000306 0.000504 

approvals 3.8E-05 0.000199 

areas 0.004021 0.004002 

assembly 0.015768 0.012798 

assessed 0.001037 0.001123 

assessments 0.000444 0.000588 

assistance 0.000183 0.000249 

assisting 8.87E-05 0.000131 

attributable 0.001501 0.001517 

attributed 0.00371 0.005516 

audits 0.000378 0.000627 

auto 0.000147 0.00023 

avalanche 0.00019 5.87E-06 

axis 0.000234 0.000199 

basic 0.000784 0.000525 

batteries 0.000277 0.000418 

battery 0.00363 0.002444 

beach 0.00027 0.000554 

benefit 0.000364 0.000468 

benefited 9.05E-06 0.000149 

billed 7.42E-05 0.000507 

billing 0.001226 0.001799 

billings 8.87E-05 0.000345 

bookcase 0.000197 1.11E-05 

P   ) P   ) 

          ) 
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books 8.15E-05 0.000223 

bounded 0.000154 2.15E-05 

break 0.000378 0.001608 

broken 0.00019 0.000737 

budgeting 3.08E-05 0.000264 

build 0.018926 0.020628 

burst 0.000335 8.48E-06 

business 0.00321 0.002099 

cage 0.000364 1.37E-05 

cam 0.007092 0.009731 

candidates 3.08E-05 0.000183 

carrying 0.000118 0.000178 

cat 0.000574 2.41E-05 

catching 0.000726 0.000815 

cc 0.001124 0.003167 

ceiling 0.001103 0.000392 

cell 0.001284 0.000959 

certifications 0.000168 0.000207 

changing 0.000494 0.000896 

chassis 0.000552 0.000998 

checkout 0.001631 0.002629 

chillers 9.6E-05 5.87E-06 

claimed 0.001262 0.00213 

closeouts 0.000277 6.59E-05 

closure 0.004992 0.003608 

coating 0.000118 0.000319 

coded 0.00032 9.2E-05 

codes 0.000248 0.000343 

coding 0.000234 0.00052 

combined 0.001914 0.001554 

compartment 0.000473 3.46E-05 

compatible 0.000277 3.98E-05 

completions 0.000371 0.0004 

condensation 0.00011 1.37E-05 

conducting 0.000306 0.000562 

conference 3.8E-05 0.00017 

configuration 0.004007 0.004576 

configurations 0.000719 0.000674 

cons 5.97E-05 1.11E-05 

consensus 0.000226 1.89E-05 

considered 0.000263 0.000658 

consumption 3.08E-05 0.00023 

contingency 0.000125 0.000225 

contributes 0.000226 0.000995 

contributor 0.000719 0.001193 

coordinated 0.000349 0.000549 

coordination 0.001573 0.001624 

cord 9.6E-05 3.26E-06 

correcting 0.000219 0.00022 

critical 0.010648 0.011341 

da 0.00048 0.001193 

damaged 0.000922 0.000718 

database 0.003536 0.003234 

days 0.001964 0.003289 

deliveries 0.010155 0.008462 

deltas 4.53E-05 7.11E-05 

demonstrated 7.42E-05 0.000254 

demonstration 0.000922 0.000786 

desaturation 0.000103 3.26E-06 

designing 3.08E-05 0.000149 

developmental 0.000147 0.000293 

distributed 0.000574 0.000812 

distribution 0.004956 0.003143 

disturbance 0.000103 3.26E-06 

diurnal 0.000154 3.26E-06 

diverting 0.000139 2.68E-05 

dos 0.000205 2.41E-05 

double 0.000277 0.000309 

downstream 0.000733 0.000429 

draft 0.000733 0.000888 

ds 0.000168 0.000215 

dynamic 0.000292 0.00034 

early 0.009496 0.013072 

earned 0.004731 0.008123 

effect 0.005274 0.005286 

efficiency 0.004557 0.006064 

elect 7.42E-05 0.000147 

email 0.000306 6.85E-05 

enclosure 0.000458 0.001188 

enhancements 0.001146 0.000303 

entire 0.000958 0.00088 

equipment 0.008678 0.009616 

evaluated 0.001298 0.001608 

evaluating 0.000386 0.000376 
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evolved 5.25E-05 7.37E-05 

executable 0.000103 1.11E-05 

exercise 0.000567 0.001039 

expenditures 0.000929 0.0014 

faceplates 0.000125 3.26E-06 

factory 0.003283 0.002804 

failing 3.8E-05 0.000238 

faraday 0.000364 1.37E-05 

favorable 0.026987 0.036475 

fc 0.000878 0.000632 

fi 5.25E-05 0.000384 

finalizing 0.000444 0.000176 

fire 0.000712 0.001045 

fitted 8.15E-05 3.26E-06 

flight 0.022518 0.021152 

floats 0.000292 1.11E-05 

flushness 0.000263 8.48E-06 

forcing 2.35E-05 0.000136 

forecasting 0.00027 0.000444 

fourth 6.7E-05 0.000246 

frequent 0.000205 5.02E-05 

function 0.000683 0.000823 

gauge 0.00019 4.24E-05 

gen 0.000292 0.000288 

generates 9.05E-06 0.000131 

gimbals 0.000378 7.11E-05 

global 0.001479 0.000457 

golden 0.000205 0.000656 

government 0.007686 0.003532 

greater 0.008193 0.006933 

gusset 0.000197 5.87E-06 

hardware 0.020135 0.016553 

harnesses 0.00119 0.000883 

head 0.000748 0.001726 

header 0.001226 0.000494 

heads 0.001204 0.001133 

heritage 0.000241 8.94E-05 

ho 0.000176 1.63E-05 

house 0.000168 0.000418 

housings 0.000176 0.000288 

impacts 0.008845 0.008546 

implemented 0.002739 0.003318 

improved 0.001646 0.001835 

inability 0.000415 0.000549 

include 0.006513 0.005534 

incorporations 6.7E-05 0.000152 

incorrect 0.000719 0.000849 

increases 0.002327 0.002504 

inductor 0.000154 3.26E-06 

inefficiency 0.000378 0.000463 

inexperienced 4.53E-05 0.000123 

integration 0.038408 0.031587 

integrator 0.000617 5.02E-05 

intensive 0.000197 0.000272 

intercostal 0.000349 1.89E-05 

interferences 0.000313 9.98E-05 

intervention 0.000241 3.26E-06 

investigation 0.005383 0.003903 

invoiced 0.000161 0.000319 

ion 0.000849 0.000157 

isolation 0.000313 0.000724 

items 0.008439 0.007178 

keys 0.000313 8.16E-05 

late 0.022323 0.018339 

layout 0.00048 0.000671 

leakage 0.000154 0.000142 

lean 0.000197 0.000343 

lessen 0.00098 0.000134 

lesson 0.000538 7.63E-05 

leveraging 0.000415 0.000494 

liaison 0.000284 0.00028 

link 0.001515 0.001577 

liquid 0.000161 5.02E-05 

live 6.7E-05 0.000596 

loader 3.8E-05 0.000121 

loaning 1.63E-05 0.000115 

logistics 0.001501 0.002031 

logs 4.53E-05 0.000173 

long 0.002595 0.003334 

los 0.000219 0.000303 

losses 9.6E-05 0.000256 

macro 0.000132 4.24E-05 

magnetics 0.000154 3.46E-05 

making 0.000502 0.000557 
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mandate 0.000205 5.87E-06 

manpower 0.002508 0.002514 

map 0.000378 0.000429 

media 0.001081 0.000178 

message 0.000465 6.59E-05 

messages 0.000241 3.72E-05 

metal 0.000342 0.00094 

middle 0.000103 0.00017 

minus 3.08E-05 0.000149 

mitigation 0.011865 0.00383 

modal 0.000675 2.41E-05 

modem 0.001668 0.000384 

modifications 0.003362 0.001452 

motion 0.001334 0.000176 

mount 0.00011 0.000209 

ne 0.002855 0.000431 

newly 0.000335 0.000517 

nm 0.000502 0.000194 

notably 5.25E-05 1.11E-05 

notching 0.000103 5.87E-06 

nulling 0.000313 1.11E-05 

obsolescence 0.00048 0.000797 

offset 0.010836 0.010117 

onetime 0.000234 0.00046 

op 8.15E-05 9.46E-05 

opportunities 0.008656 0.007721 

opportunity 0.005274 0.002981 

optimally 0.000147 5.87E-06 

optimization 0.000263 0.000601 

ordered 0.000473 0.00081 

orientations 0.00011 3.26E-06 

outsource 0.000683 0.001 

overly 9.05E-06 8.16E-05 

oversee 0.000234 4.24E-05 

oversight 0.003616 0.001436 

overtime 0.00371 0.002556 

overview 0.000596 0.000204 

page 0.0155 0.013466 

panel 0.003579 0.002391 

parts 0.012227 0.010694 

pedigree 0.000335 0.000269 

people 0.000378 0.000885 

performing 0.001993 0.002149 

phasing 0.000552 0.000849 

planed 0.000255 8.42E-05 

planning 0.011532 0.009261 

plans 0.006027 0.003877 

plating 0.000161 0.00057 

pointing 0.000914 0.000157 

port 0.001045 0.000316 

position 0.003326 0.003542 

predictability 9.05E-06 5.55E-05 

preparation 0.003898 0.00383 

preparations 0.000603 0.000776 

preparing 0.000299 0.000465 

preserve 0.000335 6.59E-05 

previous 0.006969 0.005925 

primarily 0.019331 0.021463 

processes 0.002124 0.001708 

processing 0.004847 0.003806 

procurement 0.008627 0.006426 

proper 0.000335 0.00118 

protocol 0.000596 0.000186 

pubs 0.000371 0.000872 

purchasing 0.000632 0.000374 

pure 1.63E-05 0.00011 

quarter 0.001016 0.005552 

raised 0.000364 9.46E-05 

realized 0.007896 0.005184 

reassembly 3.08E-05 0.000189 

recalibration 4.53E-05 0.000126 

recently 0.000567 0.00142 

recovery 0.009866 0.016791 

redesigned 0.000219 0.000324 

reducing 0.001624 0.001444 

ref 0.000958 0.000319 

refine 0.000545 0.000144 

relating 0.000212 0.000335 

reliability 0.000632 0.001099 

relocation 0.001023 0.000429 

remain 0.001986 0.002673 

remainder 0.001313 0.001653 

removed 0.00124 0.001695 

repair 0.003355 0.002812 
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repaired 0.000183 0.000264 

repairs 0.000255 0.001071 

rephase 0.000118 0.000228 

rephased 5.25E-05 0.000217 

rephrased 1.63E-05 9.2E-05 

requires 0.000798 0.000896 

rerouted 0.000103 3.26E-06 

research 0.00019 0.000538 

resumed 0.00011 0.000165 

return 0.001841 0.001355 

reworks 1.63E-05 0.000129 

rod 3.08E-05 0.000126 

rolling 0.001486 0.002715 

round 3.8E-05 0.000609 

route 3.08E-05 0.000118 

runs 0.002529 0.003626 

samples 0.000147 6.33E-05 

san 0.000342 0.000635 

satellite 0.002138 0.000844 

savings 0.002573 0.003824 

screen 0.000335 5.55E-05 

scrub 0.00032 3.98E-05 

secondary 0.000154 0.000455 

sets 0.000914 0.00142 

setups 0.000183 3.46E-05 

shared 0.000342 0.000379 

shelf 0.000299 6.33E-05 

shielding 0.000762 0.000269 

short 0.000806 0.001086 

significant 0.007186 0.010073 

simulation 0.001754 0.001992 

sit 0.000241 0.000457 

slave 0.000103 5.87E-06 

slipping 5.97E-05 0.000337 

slosh 0.000103 3.26E-06 

source 0.000987 0.001243 

span 0.000197 0.000262 

spare 0.001421 0.001525 

spares 0.004564 0.004506 

special 0.001211 0.001781 

specifically 0.002529 0.002141 

spending 0.000552 0.001118 

staffed 0.000328 0.000609 

staffing 0.012611 0.007638 

stand 0.000393 0.000713 

step 0.000386 0.000439 

stopping 0.000255 1.37E-05 

strengthen 0.000292 2.94E-05 

studies 0.002638 0.002227 

subassembly 0.000132 0.000416 

subtracted 1.63E-05 0.000144 

subtracting 0.000197 2.94E-05 

summaries 0.000328 0.000301 

supplies 0.00069 0.000293 

surface 0.000161 0.000178 

surge 0.000516 0.000742 

survivability 0.000538 0.00046 

sustaining 0.00166 0.001517 

swirl 0.000103 3.26E-06 

switchover 0.000205 1.11E-05 

synergies 5.25E-05 0.000129 

sys 0.001733 0.00301 

tagging 0.000313 3.72E-05 

taping 0.000574 8.48E-06 

tasks 0.032288 0.041521 

tcpi 0.020715 0.023436 

tear 5.97E-05 0.000209 

technology 0.001153 0.000241 

term 0.001544 0.001974 

terminated 7.42E-05 0.000173 

testers 2.35E-05 0.000246 

thermistor 0.000733 2.68E-05 

thermo 3.8E-05 0.000238 

thin 0.000147 1.63E-05 

thousands 0.00187 0.003138 

thrust 5.97E-05 0.000238 

times 0.000965 0.001214 

touchups 0.00011 3.26E-06 

training 0.003666 0.005432 

transfer 0.003312 0.003255 

transition 0.002537 0.002639 

trend 0.002616 0.003101 

TRUE 0.000248 0.000481 

turnover 0.000255 0.000115 
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underruning 1.63E-05 0.000129 

underspend 3.8E-05 0.000115 

unfavorable 0.036641 0.044392 

unknowns 0.000516 0.000463 

unpriced 0.001957 0.001045 

unresolved 0.000277 4.76E-05 

updating 0.000784 0.000708 

upgrade 0.005021 0.003707 

users 0.000255 0.000533 

utilize 0.000567 0.000857 

vac 0.07018 0.080204 

valid 0.000168 0.000781 

validate 0.00053 0.000207 

validity 7.42E-05 0.000162 

vectors 0.000118 1.11E-05 

venting 0.000125 3.26E-06 

verification 0.009308 0.00746 

wbs 0.05849 0.040364 

weeks 0.001595 0.002441 

wheel 0.000248 0.000168 

winglet 0.000139 3.26E-06 

wire 0.001407 0.003107 

wrong 5.97E-05 0.000379 

yearend 1.63E-05 0.000162 

accelerate 0.000364 0.000437 

accumulated 0.000407 0.000985 

arrive 0.000429 0.000489 

assemble 8.15E-05 0.000671 

attained 3.08E-05 0.00028 

bills 4.53E-05 0.000105 

communicated 3.08E-05 0.000157 

coupling 3.08E-05 0.000209 

defects 0.001501 0.000343 

deliverables 0.000444 0.000557 

deviations 7.42E-05 0.000181 

diagrams 5.25E-05 0.000384 

directly 0.000552 0.000859 

directs 0.000139 5.29E-05 

effectiveness 6.7E-05 0.000209 

eleven 3.08E-05 7.63E-05 

entered 0.000473 0.000489 

forces 9.05E-06 0.000113 

hand 0.000183 0.00022 

identifying 0.000132 0.00028 

incur 0.000212 0.000494 

incurring 0.000147 0.000319 

induction 5.25E-05 0.000358 

initiative 7.42E-05 0.00017 

managers 0.000393 0.000619 

materialize 4.53E-05 0.000134 

methods 0.000241 0.000557 

mixer 0.000226 6.33E-05 

offsite 0.000313 0.00041 

overstatement 8.15E-05 0.000178 

pegged 9.05E-06 0.000361 

physical 0.000357 0.000666 

pools 0.000103 3.72E-05 

prism 0.000154 0.000643 

productive 6.7E-05 0.000155 

recognize 5.25E-05 0.000256 

representatives 0.000342 6.07E-05 

respect 0.000299 0.000502 

rest 0.000277 0.000439 

returning 0.00019 0.000319 

rpm 0.00098 0.000144 

slack 0.000588 0.00106 

specifications 0.000675 0.000502 

supportability 0.000755 0.000504 

uncertainty 1.63E-05 8.68E-05 

understatement 4.53E-05 0.000165 

adversely 9.6E-05 0.000233 

airframe 0.002442 0.002261 

believed 0.000132 0.000186 

big 9.05E-06 9.98E-05 

cad 0.000842 4.5E-05 

compounded 0.000241 2.15E-05 

construction 0.001559 0.00111 

defining 9.6E-05 0.000376 

explain 3.08E-05 0.007298 

foundation 0.000147 1.37E-05 

intercept 9.6E-05 1.89E-05 

personal 2.35E-05 0.000147 

philosophy 0.000103 1.11E-05 

refinement 0.000415 0.000105 
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roles 3.08E-05 8.42E-05 

uhf 0.00208 0.000758 

ultra 9.6E-05 1.37E-05 

vetted 0.00019 2.15E-05 

accomplishing 0.00011 0.00028 

aircrew 9.05E-06 0.000236 

burdens 0.000219 6.07E-05 

compile 0.00019 1.37E-05 

diagram 0.00011 0.000504 

disclosed 2.35E-05 0.000272 

familiarity 0.000125 1.89E-05 

human 0.00027 0.000413 

obtaining 0.00011 0.000207 

published 0.000335 8.68E-05 

recouped 0.000147 1.63E-05 

skilled 0.000248 9.46E-05 

smiths 1.63E-05 0.000695 

undergo 9.05E-06 9.46E-05 

unexpectedly 0.000168 2.68E-05 

volatile 4.53E-05 5.87E-06 

accumulation 0.000103 0.000225 

aerodynamics 1.63E-05 0.000152 

calls 0.000168 0.000721 

consultants 1.63E-05 0.000275 

cots 0.001472 0.001251 

embedded 0.00019 0.000356 

equates 5.25E-05 0.000173 

hose 2.35E-05 0.00016 

hydraulic 0.000625 0.001246 

ids 0.000784 0.001217 

indices 0.000183 0.001875 

lighting 7.42E-05 0.000392 

likewise 5.25E-05 0.000126 

modest 9.05E-06 0.000139 

obligations 5.97E-05 8.48E-06 

predominantly 0.000219 0.000805 

stands 0.000241 0.000371 

targets 0.000741 0.000408 

tempo 3.08E-05 7.9E-05 

ultimately 8.15E-05 0.000256 

vacant 9.6E-05 0.000228 

web 0.000103 0.000249 

alleviate 0.000205 8.68E-05 

answer 0.00019 3.46E-05 

artificially 5.25E-05 0.000115 

attention 0.000118 0.000489 

authoring 9.05E-06 0.00028 

aware 4.53E-05 0.000165 

comparisons 1.63E-05 9.72E-05 

computing 8.15E-05 0.000228 

context 0.000509 6.85E-05 

converting 9.05E-06 7.9E-05 

courseware 6.7E-05 0.000155 

credits 3.8E-05 0.000225 

decline 3.8E-05 0.000136 

developments 0.00027 7.37E-05 

dim 1.81E-06 0.000413 

dispositions 9.05E-06 7.9E-05 

disruption 1.63E-05 0.000288 

economies 9.05E-06 9.46E-05 

ensures 0.000255 3.26E-06 

excessive 4.53E-05 0.000319 

fashion 8.87E-05 0.000288 

floating 2.35E-05 0.000332 

fulfill 9.05E-06 0.000173 

gaps 3.08E-05 0.000283 

heavily 2.35E-05 0.000241 

hourly 0.000951 0.001535 

inflated 4.53E-05 0.000118 

mil 6.7E-05 0.000236 

missions 2.35E-05 0.000173 

node 5.97E-05 0.000262 

normalize 2.35E-05 0.000152 

openings 6.7E-05 1.11E-05 

overspent 9.05E-06 0.000152 

picked 1.63E-05 0.000118 

pulls 0.000103 8.48E-06 

redevelop 0.000161 3.26E-06 

reflection 9.6E-05 0.000157 

segregated 0.000205 5.55E-05 

simulators 0.000422 8.16E-05 

solutions 0.00237 0.000423 

stage 0.001327 0.000857 

strictly 9.05E-06 0.000228 
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suspension 8.87E-05 0.000228 

traveling 9.05E-06 0.00016 

underestimating 0.000342 0.000426 

unreleased 9.05E-06 7.11E-05 

write 7.42E-05 0.000259 

agree 5.25E-05 8.48E-06 

armor 6.7E-05 0.000457 

breaking 5.97E-05 1.63E-05 

colocation 7.42E-05 0.000113 

costly 5.25E-05 0.000173 

das 5.97E-05 0.000115 

drafting 0.000241 0.000468 

escalate 9.05E-06 0.000123 

factoring 0.000103 2.41E-05 

hoses 1.63E-05 0.000215 

invalid 2.35E-05 0.000105 

matured 9.6E-05 0.000173 

proving 9.05E-06 0.000131 

raw 0.000168 0.00058 

shafts 0.00011 0.000223 

shot 9.05E-06 0.000113 

sizing 0.000284 2.41E-05 

slippages 5.97E-05 1.37E-05 

stems 9.05E-06 8.94E-05 

sufficiently 7.42E-05 1.11E-05 

brown 0.000168 1.63E-05 

con 3.8E-05 0.000157 

conventional 0.000103 1.37E-05 

disassemble 9.05E-06 0.000152 

disassembly 0.000299 0.00047 

draining 6.7E-05 1.11E-05 

encounter 0.000168 2.94E-05 

envisioned 1.63E-05 0.000259 

erection 7.42E-05 3.26E-06 

excavation 0.000118 1.11E-05 

feels 1.63E-05 9.98E-05 

foundations 8.87E-05 8.48E-06 

independently 0.000183 1.63E-05 

linear 0.000125 0.00053 

night 0.000132 1.37E-05 

punching 6.7E-05 8.48E-06 

resident 0.000292 9.46E-05 

restore 8.15E-05 1.63E-05 

rogers 0.000777 0.00023 

shroud 4.53E-05 0.000168 

strategies 0.000429 8.16E-05 

trended 8.15E-05 4.76E-05 

cutter 4.53E-05 5.87E-06 

depository 0.000132 0.000233 

introduced 0.000132 0.00022 

links 1.81E-06 0.000183 

mine 0.000248 0.00052 

organized 0.00011 2.15E-05 

outsourced 5.25E-05 0.000465 

scaling 9.05E-06 0.000108 

versions 0.000712 0.000243 

blitz 0.000234 2.94E-05 

deterioration 9.05E-06 0.000105 

faster 8.87E-05 0.000277 

sight 0.000139 0.000269 

svc 3.8E-05 7.63E-05 

website 0.003246 0.00028 

productions 3.08E-05 7.9E-05 

staring 9.6E-05 5.87E-06 

administrator 0.000349 5.29E-05 

cps 0.000849 0.000361 

deadline 0.000226 3.46E-05 

desktop 0.000183 0.000189 

documenting 1.63E-05 0.000126 

gyro 3.8E-05 0.000562 

individually 7.42E-05 1.11E-05 

rounds 9.05E-06 0.00022 

suffer 5.97E-05 3.26E-06 

brigade 0.000161 1.37E-05 

broader 0.000103 1.89E-05 

captures 5.97E-05 0.000157 

casino 0.000103 1.63E-05 

grand 0.000255 0.00011 

hood 0.000139 1.63E-05 

hosting 1.63E-05 0.000126 

infantry 9.6E-05 8.48E-06 

interactions 0.000292 3.2E-05 

managerial 0.000292 2.41E-05 

messaging 0.000125 5.87E-06 
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outset 0.000103 1.63E-05 

pied 0.000248 4.5E-05 

spinout 0.000139 8.48E-06 

uncontrolled 0.003239 0.000277 

virtually 0.00011 3.2E-05 

wad 0.001081 0.000277 

maritime 0.000407 3.72E-05 

pie 0.00245 0.00046 

seeker 0.000422 0.001637 

unacceptable 0.000219 5.02E-05 

devoting 0.000132 5.87E-06 

tips 0.000197 5.55E-05 

accessible 0.000726 9.46E-05 

brad 0.000328 1.37E-05 

heavier 0.000241 0.000157 

instructed 0.000349 3.72E-05 

refactoring 0.000125 1.63E-05 

advantages 8.87E-05 5.87E-06 

boundary 6.7E-05 0.000293 

coop 0.000103 1.11E-05 

encompassing 7.42E-05 1.37E-05 

fields 5.25E-05 1.89E-05 

interconnect 0.000168 0.000345 

interconnection 7.42E-05 2.94E-05 

predictions 2.35E-05 0.000217 

routers 0.000219 8.42E-05 

screens 0.000473 5.81E-05 

spaces 0.000118 3.72E-05 

struggle 0.000255 3.98E-05 

today 9.05E-06 0.000123 

arrowhead 6.7E-05 1.11E-05 

emitter 0.000125 3.2E-05 

malfunctions 7.42E-05 5.87E-06 

modeled 1.63E-05 8.42E-05 

proximity 9.05E-06 0.00029 

raise 0.000168 2.41E-05 

stakeholder 8.15E-05 2.15E-05 

surfaces 2.35E-05 0.000118 

unrealized 0.000154 3.72E-05 

chances 8.87E-05 1.63E-05 

compartments 9.6E-05 5.87E-06 

hydro 0.000132 1.37E-05 

outfitting 0.000205 1.63E-05 

scalable 6.7E-05 1.89E-05 

swath 0.000176 4.76E-05 

unfamiliar 3.8E-05 0.000233 

documentations 5.97E-05 1.89E-05 

choke 9.6E-05 2.41E-05 

connect 0.000125 2.15E-05 

enveloped 7.42E-05 1.89E-05 

fax 0.00019 3.98E-05 

formation 5.25E-05 3.26E-06 

forums 0.000241 2.41E-05 

gore 6.7E-05 1.89E-05 

helices 0.000212 2.68E-05 

helix 0.000393 1.63E-05 

leveled 9.05E-06 6.59E-05 

multiband 0.000103 1.11E-05 

rebuilds 1.63E-05 0.000223 

synthesizers 8.87E-05 8.48E-06 

flood 0.000378 3.98E-05 

mater 8.15E-05 5.87E-06 

protector 0.000313 2.15E-05 

scintillation 9.6E-05 1.89E-05 

semesters 9.6E-05 1.11E-05 

turnovers 0.000118 1.11E-05 

uniformly 0.000132 1.37E-05 

viability 0.000139 1.11E-05 

wizards 0.000132 1.63E-05 

facet 9.05E-06 7.9E-05 

sibs 0.000139 3.2E-05 

harnessing 9.05E-06 8.16E-05 
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Appendix J: Definition 2: Hybrid Classifier (LOOCV) Formulation 

Hybrid Model (Part I: Naïve Bayes classifier to produce outputs for Part II) 

MI Threshold: 0.007 

 - Level: 0.00006103515625 

Naïve Bayes Text Classification Rule 

     
      

   
                       

      

  

 

 

 

 
 

 

 
0.27881 0.72119 

 

 
 

  
_Features High-Risk 

Nominal-
Risk 

absence 0.000109 0.000255 

absences 1.36E-05 0.000197 

ac 0.001425 0.002137 

acct 5.43E-05 0.00035 

accurately 0.000339 0.000659 

act 0.009542 0.003473 

activation 0.000665 0.000148 

ad 8.14E-05 0.000762 

adjusting 5.43E-05 0.000269 

administration 0.003461 0.00151 

advance 0.00133 0.000614 

agreements 0.000163 0.00065 

ahead 0.008809 0.01433 

alerts 0.000122 4.48E-06 

allowable 2.71E-05 0.000197 

alternative 0.000217 0.00056 

amp 4.07E-05 0.004884 

amplifier 0.002158 0.00043 

angular 0.000109 4.48E-06 

anticipation 0.000136 0.000453 

aperture 0.000624 0.000197 

apogee 0.000136 8.96E-06 

appendix 0.000516 0.000143 

apportioned 0.000285 0.000766 

approvals 4.07E-05 0.000287 

areas 0.00566 0.005628 

assessed 0.001493 0.001492 

assessments 0.000489 0.000816 

assistance 0.000122 0.000358 

attributable 0.001765 0.002182 

auxiliary 9.5E-05 0.000609 

availed 8.14E-05 4.48E-06 

avalanche 0.000204 8.96E-06 

avoid 0.000842 0.000408 

axis 0.000176 0.000278 

base 0.006637 0.004122 

baseplate 6.79E-05 4.48E-06 

basic 0.001208 0.000807 

benefit 0.000434 0.000663 

benefited 1.36E-05 0.000202 

billed 8.14E-05 0.000609 

billings 0.000136 0.00043 

bonds 0.000204 1.79E-05 

bookcase 0.000244 4.48E-06 

bounded 0.00019 2.69E-05 

break 0.000584 0.002379 

broken 0.000163 0.001026 

budgeting 2.71E-05 0.000376 

P   ) P   ) 

          ) 
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buffer 0.000299 5.83E-05 

burst 0.000176 1.34E-05 

cage 0.000421 1.79E-05 

cam 0.008551 0.012743 

campaign 5.43E-05 0.003383 

candidates 1.36E-05 0.000278 

carry 0.001357 0.000614 

cat 0.000638 4.03E-05 

catching 0.001181 0.001134 

cc 0.001439 0.004311 

ceiling 0.001479 0.000533 

cell 0.001493 0.001349 

certifications 0.000231 0.000291 

changing 0.00076 0.001326 

checkout 0.001642 0.003522 

chillers 0.000109 8.96E-06 

claimed 0.001575 0.00272 

click 0.000217 4.48E-06 

closeouts 0.000231 8.96E-05 

closure 0.006271 0.004906 

cm 0.019695 0.005942 

coded 0.000516 0.000134 

coding 0.000312 0.000672 

combined 0.002606 0.002151 

compartment 0.000434 5.83E-05 

compatible 0.000394 5.38E-05 

condensation 0.000109 1.34E-05 

conducting 0.000407 0.000802 

conference 2.71E-05 0.000229 

configuration 0.005361 0.006493 

configurations 0.00095 0.000999 

cons 0.000109 8.96E-06 

consensus 0.000326 2.69E-05 

considered 0.000258 0.000977 

consult 6.79E-05 4.48E-06 

consumed 0.000204 0.000636 

consumption 4.07E-05 0.000314 

containers 0.000557 0.000851 

contingency 0.000109 0.000332 

contributes 0.000366 0.001416 

contributor 0.001072 0.001756 

coordinated 0.000516 0.000739 

cord 0.000109 4.48E-06 

count 0.00114 0.000497 

cutout 8.14E-05 4.48E-06 

da 2.71E-05 0.001515 

damaged 0.000991 0.000932 

demonstrated 0.000122 0.000345 

derived 0.001059 0.001152 

desaturation 0.000109 4.48E-06 

designing 4.07E-05 0.000193 

detector 0.00038 0.000139 

develop 0.004628 0.002841 

directed 0.003353 0.001523 

discovered 0.002009 0.001344 

discretely 1.36E-05 0.000161 

distributed 0.000611 0.001205 

disturbance 0.000109 4.48E-06 

diurnal 0.000122 4.48E-06 

diverting 0.000176 2.24E-05 

dos 0.000299 3.58E-05 

downstream 0.001167 0.000627 

drawers 9.5E-05 4.48E-06 

drops 0.002701 0.000641 

ds 9.5E-05 0.0003 

early 0.012569 0.019075 

earned 0.006407 0.01053 

economical 0.000109 1.79E-05 

eddy 0.00057 4.03E-05 

edge 0.000692 0.000166 

elect 1.36E-05 0.000175 

email 0.000421 9.41E-05 

enclosure 0.000597 0.001443 

enhance 0.000244 5.83E-05 

enhancements 0.001493 0.000444 

equipment 0.011415 0.013411 

evaluated 0.001914 0.00216 

exercise 0.000679 0.001515 

expenditures 0.001303 0.001895 

faceplates 0.000109 4.48E-06 

failing 6.79E-05 0.000345 

faraday 0.000421 1.79E-05 

favorable 0.035128 0.049997 

fi 2.71E-05 0.000609 

finalizing 0.000624 0.000242 

findings 0.000271 0.000632 
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fire 0.000747 0.001573 

fitted 9.5E-05 4.48E-06 

flags 0.000176 1.79E-05 

flatness 0.000543 0.000108 

floats 0.000312 1.79E-05 

flushness 0.000271 1.34E-05 

forecasting 0.000366 0.000654 

fourth 0.000122 0.000345 

frequent 0.000326 7.17E-05 

function 0.000882 0.001143 

gasket 0.000136 2.24E-05 

gauge 0.000231 5.83E-05 

gave 0.000109 1.34E-05 

gen 0.000394 0.000381 

generates 1.36E-05 0.000211 

gimbals 0.000624 0.000112 

global 0.00243 0.000659 

grounding 0.001303 0.000363 

gusset 0.00019 8.96E-06 

header 0.001927 0.000686 

heritage 0.000366 0.000134 

ho 0.000258 2.24E-05 

house 0.000122 0.000618 

identifiers 0.003434 0.000385 

inability 0.000312 0.000802 

incorporations 8.14E-05 0.000229 

increases 0.002945 0.003625 

inductor 0.000204 4.48E-06 

inductors 0.000109 4.48E-06 

inefficiency 0.000624 0.000587 

inexperienced 4.07E-05 0.000175 

integration 0.051823 0.043378 

integrator 0.000747 7.17E-05 

intercostal 0.000394 2.69E-05 

intervention 0.000109 4.48E-06 

investigation 0.004819 0.005108 

invoiced 0.000163 0.000457 

ion 0.001127 0.000184 

isolation 0.000434 0.001049 

iv 0.000787 0.001371 

keys 0.000407 0.000103 

layout 0.000557 0.000977 

lean 0.000204 0.000551 

lessen 0.001371 0.000255 

lesson 0.000774 0.000125 

liquid 0.000271 5.38E-05 

live 5.43E-05 0.000869 

loader 6.79E-05 0.000179 

loaning 1.36E-05 0.000175 

logistics 0.002321 0.002706 

logs 6.79E-05 0.000233 

long 0.003081 0.005036 

loop 0.001466 0.00026 

los 0.000122 0.000421 

losses 0.000122 0.000345 

macro 0.000204 4.48E-05 

made 0.006841 0.008823 

magnetics 0.000204 4.93E-05 

maintained 0.00114 0.000385 

mandate 0.000217 8.96E-06 

media 0.001344 0.00026 

members 0.000597 0.001259 

message 0.000733 8.51E-05 

messages 0.000353 7.17E-05 

minus 5.43E-05 0.000197 

mitigate 0.007886 0.0044 

mm 0.000176 0.000493 

modal 0.000665 4.03E-05 

modem 0.001194 0.000542 

motion 0.001493 0.000273 

motors 2.71E-05 0.000305 

nadir 0.000557 7.62E-05 

ne 0.004045 0.000551 

negotiated 0.004791 0.003746 

newly 0.000461 0.000712 

notching 0.000109 8.96E-06 

nulling 0.000136 1.79E-05 

obsolescence 0.000624 0.001044 

offset 0.014944 0.013514 

onetime 0.000312 0.000686 

opportunity 0.007723 0.004033 

optimally 0.000176 8.96E-06 

optimization 0.000312 0.000896 

organization 0.001018 0.001125 

orientations 0.000163 4.48E-06 

outsource 0.000909 0.001447 
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overly 1.36E-05 0.000108 

oversee 0.000326 5.38E-05 

oversight 0.004751 0.0022 

overtime 0.004574 0.003647 

overview 0.000828 0.000323 

page 0.022165 0.01851 

park 0.000258 8.96E-06 

partners 0.000394 7.62E-05 

people 0.000461 0.001264 

performing 0.002457 0.002904 

phased 0.001357 0.000789 

phases 0.002145 0.00091 

phasing 0.000638 0.00112 

plating 0.00019 0.000793 

plugs 0.000122 1.79E-05 

pointing 0.001181 0.000237 

pop 0.005171 0.001071 

port 0.001642 0.00043 

position 0.005076 0.004839 

preparations 0.000557 0.001035 

preparing 0.000407 0.00065 

presentation 9.5E-05 0.000515 

preserve 0.000543 0.000108 

problems 0.00433 0.004732 

processes 0.00319 0.002433 

processing 0.005592 0.005435 

procurement 0.011103 0.009051 

proper 0.000461 0.001725 

protocol 0.000842 0.000269 

pubs 0.000434 0.001362 

pure 2.71E-05 0.000161 

quarter 0.00167 0.007971 

raised 0.000502 0.000152 

ratio 0.002592 0.001828 

reason 0.005864 0.006793 

reassembly 5.43E-05 0.000255 

recessed 8.14E-05 4.48E-06 

recovering 0.000611 0.000968 

reducing 0.001927 0.001909 

ref 0.001289 0.000466 

refine 0.000774 0.000188 

relating 0.000258 0.00047 

reliability 0.000665 0.001523 

remain 0.00243 0.003885 

remainder 0.001534 0.002402 

removals 0.000258 1.34E-05 

removed 0.001344 0.002429 

repaired 0.000136 0.00035 

repairs 0.000339 0.00147 

reporting 0.018962 0.017722 

rerouted 9.5E-05 4.48E-06 

research 0.000285 0.000784 

retain 0.000244 8.07E-05 

reworks 1.36E-05 0.000188 

rocket 2.71E-05 0.000184 

rolling 0.001832 0.003638 

roughly 0.000353 0.000703 

round 3.31E-09 0.000878 

route 2.71E-05 0.00017 

samples 0.000271 4.48E-05 

san 0.000285 0.000954 

satellite 0.003244 0.001264 

saver 6.79E-05 4.48E-06 

savings 0.003746 0.005243 

screen 0.000543 8.07E-05 

scrub 0.000502 4.48E-05 

secondary 0.000258 0.000641 

senor 9.5E-05 8.96E-06 

setups 0.000299 4.93E-05 

shared 0.000285 0.00052 

shelf 0.000502 9.86E-05 

shielding 0.000787 0.00039 

short 0.000991 0.00151 

shunting 6.79E-05 4.48E-06 

simulation 0.001398 0.002962 

sit 0.000217 0.000672 

size 0.002389 0.000968 

slave 9.5E-05 8.96E-06 

slipping 8.14E-05 0.000421 

slosh 0.000109 4.48E-06 

solution 0.00243 0.00086 

span 0.000149 0.00035 

specifically 0.003923 0.002989 

spending 0.000774 0.001618 

spread 0.000869 0.001429 

staffing 0.016234 0.010705 
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stand 0.000448 0.00091 

static 0.002511 0.001026 

step 0.000516 0.000596 

stockroom 0.000176 1.34E-05 

strengthen 0.000448 3.58E-05 

studies 0.00243 0.003195 

subassembly 0.000176 0.000614 

subtracting 0.000271 4.48E-05 

supplies 0.001059 0.000372 

surface 9.5E-05 0.000264 

surge 0.000543 0.001044 

survivability 0.000543 0.000672 

swirl 0.000109 4.48E-06 

switchover 0.000217 1.79E-05 

sys 0.001724 0.004113 

table 0.00323 0.001963 

tagging 0.000475 6.27E-05 

taping 0.000597 1.34E-05 

tasks 0.042362 0.058084 

tcpi 0.025762 0.031065 

tear 9.5E-05 0.000296 

term 0.0019 0.002944 

testers 2.71E-05 0.00035 

thermistor 0.00076 4.48E-05 

thermo 2.71E-05 0.000341 

thin 0.000149 2.24E-05 

times 0.00133 0.001734 

tolerance 0.000204 0.000278 

touchups 0.000109 4.48E-06 

traceability 0.000638 0.000161 

tracking 0.004086 0.001649 

training 0.005212 0.007658 

transition 0.002905 0.003777 

trend 0.002362 0.005001 

TRUE 0.000339 0.00069 

tubes 0.00057 0.000358 

turnover 0.000366 0.00017 

unavailability 0.001194 0.000488 

underruning 2.71E-05 0.000161 

underspend 1.36E-05 0.000188 

unfavorable 0.049637 0.061342 

unpriced 0.002606 0.001479 

unresolved 0.000475 5.38E-05 

unscheduled 0.000692 0.000341 

updating 0.000842 0.001004 

upgrade 0.007737 0.004929 

utilizes 0.000163 3.14E-05 

vac 0.095094 0.107673 

valid 0.000231 0.000986 

validate 0.000652 0.000287 

validity 4.07E-05 0.000206 

vectors 0.000136 4.48E-06 

venting 0.000136 4.48E-06 

voiding 6.79E-05 4.48E-06 

wave 0.002131 0.003419 

wbs 0.082743 0.057981 

weekend 0.000448 0.000166 

weeks 0.001955 0.003482 

west 0.000516 0.000224 

winglet 0.000109 4.48E-06 

worked 0.004398 0.004669 

wrong 8.14E-05 0.000515 

xl 0.000258 7.62E-05 

yearend 2.71E-05 0.000202 

arrive 0.000584 0.000659 

assemble 0.000122 0.000945 

aviation 0.004357 0.001411 

cease 2.71E-05 0.000143 

communicated 2.71E-05 0.000224 

defects 0.002348 0.000497 

deliverables 0.000638 0.000771 

departments 0.000285 8.96E-05 

deviations 6.79E-05 0.00026 

diagrams 9.5E-05 0.000551 

diminish 0.000109 0.000255 

directly 0.000611 0.00125 

disassembled 1.36E-05 0.000188 

effectiveness 4.07E-05 0.000282 

eleven 1.36E-05 0.000125 

forces 1.36E-05 0.000152 

forecasts 0.000448 0.000807 

identifying 0.000149 0.000408 

incur 0.000271 0.000708 

incurring 0.000217 0.000466 

initiative 2.71E-05 0.000278 

managers 0.000516 0.000883 
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methods 0.000312 0.000793 

mixer 0.000407 9.41E-05 

noted 0.002402 0.001313 

pegged 1.36E-05 0.000538 

percentages 0.000149 1.34E-05 

pools 0.000149 5.83E-05 

prism 6.79E-05 0.001031 

recognize 9.5E-05 0.000381 

representatives 0.000543 8.96E-05 

respect 0.00038 0.000672 

rest 0.000271 0.000654 

rpm 0.00171 0.000193 

sow 0.003706 0.001792 

uncertainty 1.36E-05 0.000103 

adversely 0.000122 0.000354 

asked 2.71E-05 0.000161 

cad 0.001452 8.96E-05 

comply 0.000176 0.000506 

compounded 0.000394 3.14E-05 

construction 0.001968 0.0016 

defining 9.5E-05 0.000484 

describe 2.71E-05 0.002021 

ended 0.000774 0.000341 

explain 5.43E-05 0.011171 

foundation 0.000244 3.14E-05 

governments 0.000461 8.07E-05 

intercept 0.000163 2.69E-05 

keeping 0.000109 0.000435 

misinterpretation 0.00038 0.00013 

parameter 0.000149 1.79E-05 

personal 4.07E-05 0.000206 

philosophy 0.000163 1.79E-05 

programmatic 0.000366 0.002684 

refinement 0.000557 0.000157 

roles 2.71E-05 0.00013 

vetted 0.000326 3.14E-05 

accomplishing 0.000176 0.000394 

aircrew 1.36E-05 0.000358 

burdens 0.000366 9.41E-05 

compile 0.000285 2.24E-05 

diagram 0.000149 0.000793 

disclosed 2.71E-05 0.000367 

familiarity 0.000204 2.69E-05 

hazard 5.43E-05 0.000229 

indexes 0.000217 5.83E-05 

negligible 2.71E-05 0.000587 

obtaining 8.14E-05 0.000309 

published 0.000516 0.000134 

recouped 0.000231 3.58E-05 

schematic 0.000231 0.000139 

skilled 0.000421 0.000117 

slope 9.5E-05 8.96E-06 

smiths 2.71E-05 0.001134 

terms 0.000299 0.000502 

unexpectedly 0.000285 1.34E-05 

accumulation 0.000122 0.0003 

calls 0.000231 0.001026 

consultants 1.36E-05 0.000399 

cots 0.001914 0.001739 

embedded 0.000258 0.000453 

equates 1.36E-05 0.000246 

handle 0.000869 0.000372 

helped 5.43E-05 0.000291 

hose 4.07E-05 0.000215 

hydraulic 0.000923 0.001703 

ids 0.001072 0.001676 

indices 0.000285 0.00242 

lighting 8.14E-05 0.000578 

likewise 1.36E-05 0.000193 

modest 1.36E-05 0.000175 

narratives 4.07E-05 0.000305 

obligations 0.000109 8.96E-06 

predominantly 0.000339 0.001066 

reserved 0.000217 5.83E-05 

targets 0.001181 0.000533 

trip 0.006855 0.004216 

ultimately 9.5E-05 0.000358 

understaffed 0.000149 0.000421 

vacant 1.36E-05 0.000314 

web 0.000122 0.00035 

yielding 6.79E-05 0.000211 

adherence 0.000502 5.83E-05 

alleviate 0.000299 0.000125 

answer 0.000299 5.38E-05 

attention 0.000176 0.000721 

authoring 1.36E-05 0.000417 
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aware 6.79E-05 0.000246 

causal 1.36E-05 0.000175 

comparisons 1.36E-05 0.000152 

computing 6.79E-05 0.000327 

consist 4.07E-05 0.000193 

context 0.000814 6.72E-05 

converting 1.36E-05 0.000112 

decline 5.43E-05 0.000193 

developments 0.000394 0.000108 

dim 3.31E-09 0.000632 

dispositions 1.36E-05 0.000125 

disruption 2.71E-05 0.000444 

economies 1.36E-05 0.000125 

ensures 0.000475 4.48E-06 

excessive 5.43E-05 0.000439 

extends 0.000529 8.07E-05 

fashion 0.000136 0.000412 

floating 4.07E-05 0.000412 

fulfill 1.36E-05 0.00026 

gaps 5.43E-05 0.000412 

gaskets 1.36E-05 0.000139 

heavily 1.36E-05 0.000314 

hires 1.36E-05 0.000273 

hourly 0.001371 0.002191 

inflated 4.07E-05 0.000166 

leader 1.36E-05 0.000143 

mil 8.14E-05 0.000345 

missions 2.71E-05 0.000251 

node 5.43E-05 0.000381 

normalize 2.71E-05 0.000188 

omitted 0.000271 6.72E-05 

overspent 1.36E-05 0.000211 

picked 1.36E-05 0.000179 

pulls 0.00019 8.96E-06 

redevelop 0.000244 4.48E-06 

redline 0.000176 0.000448 

reflection 0.000122 0.000211 

scanning 1.36E-05 0.000161 

shipside 2.71E-05 0.000215 

simulators 0.000638 0.000125 

solutions 0.003 0.000529 

strictly 1.36E-05 0.000332 

suspension 1.36E-05 0.000363 

traveling 1.36E-05 0.000224 

underestimating 0.000584 0.000596 

unreleased 1.36E-05 0.000108 

write 8.14E-05 0.000363 

armor 9.5E-05 0.000686 

augmented 2.71E-05 0.000237 

costly 3.31E-09 0.000282 

das 5.43E-05 0.000148 

entrance 0.000217 4.48E-05 

escalate 1.36E-05 0.000166 

factoring 0.00019 1.34E-05 

hoses 2.71E-05 0.0003 

invalid 2.71E-05 0.000139 

prescribed 6.79E-05 4.48E-06 

proving 1.36E-05 0.000202 

raw 0.000271 0.000802 

redesigning 0.000122 1.79E-05 

shafts 0.000176 0.000314 

shot 1.36E-05 0.000157 

sizing 0.000475 4.03E-05 

steel 0.000176 0.000605 

stems 1.36E-05 0.000125 

sufficiently 0.000136 1.34E-05 

theory 0.000977 0.000242 

uncovered 0.000529 0.000193 

backfilling 0.000149 8.96E-06 

brown 0.000285 2.69E-05 

chemical 0.003556 0.002491 

con 4.07E-05 0.000193 

disassembly 5.43E-05 0.000798 

draining 0.000122 8.96E-06 

encounter 0.000285 4.48E-05 

envisioned 3.31E-09 0.000354 

excavation 0.000217 1.79E-05 

feels 2.71E-05 0.000139 

independently 0.000312 2.24E-05 

linear 4.07E-05 0.000789 

mast 0.000869 0.000139 

night 0.00019 1.79E-05 

pervious 0.000204 1.34E-05 

platforms 0.000461 0.001232 

pumps 0.000176 2.24E-05 

punching 0.000122 4.48E-06 
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recruiting 1.36E-05 0.000125 

resident 0.000394 0.000134 

restore 0.000136 2.69E-05 

shroud 2.71E-05 0.000264 

strategies 0.000652 0.000108 

substation 0.000624 1.34E-05 

wage 0.000176 0.002429 

cutter 8.14E-05 4.48E-06 

depository 3.31E-09 0.000345 

exceptions 1.36E-05 0.000108 

interruption 2.71E-05 0.000148 

links 3.31E-09 0.000242 

organized 0.000163 1.79E-05 

outsourced 6.79E-05 0.000677 

scaling 1.36E-05 0.000152 

versions 0.000991 0.000323 

voice 0.000597 0.000197 

algorithmic 0.00019 3.14E-05 

blitz 0.00038 4.93E-05 

deterioration 1.36E-05 0.000157 

largo 0.002022 0.00039 

med 0.000176 0.000426 

sight 1.36E-05 0.000394 

spiral 0.000977 0.000103 

svc 2.71E-05 0.000112 

website 0.004995 0.000399 

productions 2.71E-05 0.000103 

staring 0.000163 8.96E-06 

administrator 0.000611 7.62E-05 

cps 0.001222 0.000453 

deadline 0.000394 4.03E-05 

desktop 0.000271 0.00026 

documenting 2.71E-05 0.000175 

gyro 6.79E-05 0.000811 

mobility 2.71E-05 0.000215 

preservation 0.000109 4.48E-06 

rounds 1.36E-05 0.000305 

suffer 8.14E-05 4.48E-06 

brigade 0.000271 2.24E-05 

broader 0.000163 2.69E-05 

captures 4.07E-05 0.00022 

casino 0.000163 2.24E-05 

cci 0.000136 4.48E-06 

halted 2.71E-05 0.000134 

hood 0.000258 2.69E-05 

hosting 2.71E-05 0.000179 

infantry 0.000149 1.34E-05 

interactions 0.000475 4.03E-05 

managerial 0.000339 2.69E-05 

messaging 0.000231 8.96E-06 

nick 9.5E-05 8.96E-06 

outset 0.000163 2.24E-05 

pied 0.000394 7.17E-05 

reproduce 0.000258 2.69E-05 

spin 0.000407 0.000229 

spinout 0.000231 1.34E-05 

terrestrial 0.000285 4.48E-06 

theater 0.000529 9.41E-05 

uncontrolled 0.004995 0.000394 

pie 0.00357 0.000453 

producible 1.36E-05 0.000117 

sib 0.001914 0.000202 

sources 0.000271 6.27E-05 

unacceptable 0.000353 6.72E-05 

devoting 0.000163 8.96E-06 

shape 0.000217 2.69E-05 

tips 0.000326 1.79E-05 

accessible 0.001018 0.000117 

brad 0.000407 2.24E-05 

heavier 0.000326 0.000215 

instructed 0.00057 4.93E-05 

java 0.000258 4.48E-05 

refactoring 0.00019 2.69E-05 

strike 0.000271 5.83E-05 

touches 1.36E-05 9.86E-05 

advantages 0.000136 8.96E-06 

boundary 0.000122 0.000412 

collectively 0.000122 1.79E-05 

coop 0.000163 1.79E-05 

fields 9.5E-05 4.48E-06 

highlight 8.14E-05 8.96E-06 

interconnect 0.00019 0.000475 

interconnection 0.000136 4.48E-05 

label 0.000529 0.000152 

lighter 2.71E-05 0.000488 

predictions 2.71E-05 0.000296 
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routers 0.000366 0.00013 

screens 0.000801 9.41E-05 

sop 0.000271 3.58E-05 

spaces 0.000204 4.93E-05 

struggle 0.000353 6.72E-05 

today 1.36E-05 0.000175 

arrowhead 0.000122 1.34E-05 

editor 1.36E-05 9.41E-05 

emitter 0.000204 5.38E-05 

malfunctions 0.000122 4.48E-06 

modeled 2.71E-05 0.000117 

proximity 1.36E-05 0.000417 

raise 0.000244 4.03E-05 

surfaces 1.36E-05 0.000179 

unrealized 0.000258 4.03E-05 

auxiliaries 0.000434 2.69E-05 

chances 0.000122 2.24E-05 

compartments 0.000136 8.96E-06 

hookups 0.000149 4.48E-06 

hydro 0.00019 2.24E-05 

maneuvering 0.000163 8.96E-06 

outfitting 0.000312 2.69E-05 

conduction 0.000122 4.48E-05 

suitcase 6.79E-05 4.48E-06 

documentations 0.000109 1.34E-05 

choke 0.000176 3.14E-05 

connect 0.000204 2.69E-05 

downsized 9.5E-05 4.48E-06 

enveloped 0.000136 2.24E-05 

fax 0.000271 4.03E-05 

formation 8.14E-05 4.48E-06 

forums 0.000394 3.58E-05 

frequencies 0.000163 4.48E-06 

helix 0.000733 8.96E-06 

multiband 0.000176 1.79E-05 

rebuilds 2.71E-05 0.000318 

synthesizers 0.000163 4.48E-06 

equations 0.000312 8.96E-05 

flood 0.000638 6.72E-05 

mater 0.000136 8.96E-06 

orb 0.000217 4.48E-05 

protector 0.000543 3.58E-05 

scintillation 0.000163 2.69E-05 

semesters 0.000149 1.79E-05 

turnovers 0.00019 1.79E-05 

uniformly 0.000217 2.24E-05 

viability 0.000244 8.96E-06 

wizards 0.000217 2.69E-05 

facet 1.36E-05 0.000112 

sibs 0.000258 5.38E-05 

sleeper 0.000122 8.96E-06 

harnessing 1.36E-05 0.000112 
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Hybrid Model (Part II: Using inputs from Naïve Bayes Classifier above) 

Variables:  

 TSPI 

 CV% 

 NB_Pred_Class 
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Appendix K: Definition 3: Multivariate Classification (LOOCV) Formulation 

Variables:  

% Complete 

CPI 

% Difference Between ML and W 

% Difference Between W and B 

TCPI StDev 

SCI StDev 

CV% StDev 

AF 

Comm. 

Helicopter 

Ship 

Plane 

Radar 

Satellite 

Small 

     
 

 
  

    
     

         
   

     
   

            
      

      
  

  

  
   

     
 

 
  

    
     

         
   

     
   

            
      

      
  

  

  
   

Where 

k = 
 

 
   

    

    
  

 

 
   

   
       

   
      

 

Let  
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0.04325977 -0.00386 -0.00142 -0.00222 0.013355 -0.00265 -0.00068 -0.0059 -0.01514 -0.00321 0.006534 -0.01747 0.009259 0.021156 0.011196

-0.003857411 0.004196 -0.00111 -0.00072 0.002747 0.00043 -0.0002 0.003241 -0.00182 0.001335 -0.00142 0.004141 0.004076 -0.00636 -0.0001

-0.001422716 -0.00111 0.001511 0.001462 -0.00111 0.000163 0.000253 0.000946 -0.00027 -7.9E-05 -0.00015 0.002056 0.000221 -0.00153 0.00302

-0.002222975 -0.00072 0.001462 0.002111 0.002957 0.000235 0.000276 0.001922 -0.00051 0.001085 -0.00076 0.000385 0.002004 -0.00202 0.000309

0.013355093 0.002747 -0.00111 0.002957 0.749532 0.000308 0.001046 0.024825 -0.04351 -0.01619 0.002125 -0.03069 0.061541 0.02933 0.005883

-0.002646645 0.00043 0.000163 0.000235 0.000308 0.001611 0.000962 0.000155 -0.00031 -0.00058 -0.00022 0.00175 -0.00081 0.000211 0.003509

-0.000675908 -0.0002 0.000253 0.000276 0.001046 0.000962 0.000965 -0.00101 -0.00071 -0.00025 -4.9E-05 -0.0003 -0.00047 0.001837 0.002405

-0.005900557 0.003241 0.000946 0.001922 0.024825 0.000155 -0.00101 0.221683 -0.10534 -0.0084 -0.01887 0.033203 0.060604 0.045085 -0.07569

-0.015135087 -0.00182 -0.00027 -0.00051 -0.04351 -0.00031 -0.00071 -0.10534 0.217498 -0.03334 -0.01819 -0.06669 -0.0288 -0.06442 0.000605

-0.003212807 0.001335 -7.9E-05 0.001085 -0.01619 -0.00058 -0.00025 -0.0084 -0.03334 0.093813 -0.00597 -0.0219 -0.00946 -0.02115 0.035771

0.006533837 -0.00142 -0.00015 -0.00076 0.002125 -0.00022 -4.9E-05 -0.01887 -0.01819 -0.00597 0.053885 -0.01194 -0.00516 -0.01154 -0.01382

-0.0174699 0.004141 0.002056 0.000385 -0.03069 0.00175 -0.0003 0.033203 -0.06669 -0.0219 -0.01194 0.165728 -0.01891 -0.0423 0.014399

0.009258853 0.004076 0.000221 0.002004 0.061541 -0.00081 -0.00047 0.060604 -0.0288 -0.00946 -0.00516 -0.01891 0.08231 -0.01827 -0.03696

0.021156049 -0.00636 -0.00153 -0.00202 0.02933 0.000211 0.001837 0.045085 -0.06442 -0.02115 -0.01154 -0.0423 -0.01827 0.16152 0.007793

0.011195909 -0.0001 0.00302 0.000309 0.005883 0.003509 0.002405 -0.07569 0.000605 0.035771 -0.01382 0.014399 -0.03696 0.007793 0.242212

0.05296623 -0.00754 -0.00342 -0.00462 0.134185 -0.00209 -0.00062 0.035553 -0.03436 -0.0069 -0.00061 0.030267 0.002471 0.014324 -0.0262

-0.007543212 0.007864 0.000983 0.00243 -0.05658 0.000663 1.39E-05 -0.00294 -0.00142 -0.00113 -0.00048 -0.00211 -0.00087 -0.00415 0.008972

-0.003421111 0.000983 0.001287 0.001404 -0.00737 4.73E-05 -3.4E-06 -0.00312 0.006498 0.000185 -0.00042 -0.00312 0.001035 -0.00161 0.006662

-0.004624765 0.00243 0.001404 0.0021 0.000309 0.00015 -6E-06 -0.00242 0.005121 0.001015 -0.00074 -0.0034 0.000768 -0.00104 0.007865

0.134184643 -0.05658 -0.00737 0.000309 61.61797 0.014849 0.021547 -0.30168 -0.171 -0.03663 -0.03544 -0.25333 -0.01444 0.646754 0.675922

-0.002085373 0.000663 4.73E-05 0.00015 0.014849 0.000566 0.000238 0.000293 -0.0013 0.000325 -0.00032 -0.00073 -6.1E-05 -0.00011 0.001678

-0.00061533 1.39E-05 -3.4E-06 -6E-06 0.021547 0.000238 0.000166 0.00014 -0.00051 0.000248 -0.00015 -0.00096 -5.6E-06 0.000564 0.001257

0.035552585 -0.00294 -0.00312 -0.00242 -0.30168 0.000293 0.00014 0.232243 -0.0731 0.004575 -0.0148 0.119244 0.016128 0.035192 -0.05694

-0.034362335 -0.00142 0.006498 0.005121 -0.171 -0.0013 -0.00051 -0.0731 0.160406 -0.00863 -0.00812 -0.0599 -0.00508 -0.02386 0.054315

-0.006896094 -0.00113 0.000185 0.001015 -0.03663 0.000325 0.000248 0.004575 -0.00863 0.04129 -0.00175 -0.01289 -0.00109 -0.00513 0.014322

-0.000609865 -0.00048 -0.00042 -0.00074 -0.03544 -0.00032 -0.00015 -0.0148 -0.00812 -0.00175 0.038964 -0.01213 -0.00103 -0.00483 -0.00802

0.030267378 -0.00211 -0.00312 -0.0034 -0.25333 -0.00073 -0.00096 0.119244 -0.0599 -0.01289 -0.01213 0.210024 -0.00758 -0.03564 -0.04899

0.002471214 -0.00087 0.001035 0.000768 -0.01444 -6.1E-05 -5.6E-06 0.016128 -0.00508 -0.00109 -0.00103 -0.00758 0.024738 -0.00302 -0.00501

0.0143244 -0.00415 -0.00161 -0.00104 0.646754 -0.00011 0.000564 0.035192 -0.02386 -0.00513 -0.00483 -0.03564 -0.00302 0.105095 0.017053

-0.026202756 0.008972 0.006662 0.007865 0.675922 0.001678 0.001257 -0.05694 0.054315 0.014322 -0.00802 -0.04899 -0.00501 0.017053 0.158877
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0.71229952

0.95996639

0.02984478

0.04094059

0.18126513

0.01702859

0.01097231

0.33016627

0.31828979

0.10451306

0.05700713

0.20902613

0.09026128

0.20190024

0.40855107

0.63897418

1.00982778

0.02195576

0.03119706

0.87479956

0.01059470

0.00556278

0.36455696

0.20000000

0.04303797

0.04050633

0.29873418

0.02531646

0.11898734

0.19746835
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